Influence of Tb incorporation on the electronic properties of ZnO nanoparticles
DOI:
https://doi.org/10.5281/Keywords:
ZnO nanoparticles, RE doping, Terbium, Energy storage, EXAFSAbstract
This review describes the structural and optical properties of the Terbium (Tb) doped Zinc Oxide (ZnO) nanoparticles that are systematically studied as a function of the Tb mole-fraction. Our study suggests that the Tb incorporates mostly on the surface and affects the optical properties of the ZnO nanoparticles by influencing the attachment of certain adsorbed groups, which are found to be responsible for the appearance of a broad green luminescence (GL) band in the photoluminescence spectra recorded for these nanoparticles. It has been found that the accumulation of Tb on the surface of the nanoparticles not only enhances the band edge to green luminescence intensity ratio under the vacuum condition but also increases the band gap energy by introducing a hydrostatic compressive strain in individual nanoparticles, which provides a unique opportunity to study the pressure dependence of the optical properties of nanoparticles without applying any external pressure. The hydrostatic compressive strain is explained in terms of the increase of the surface strain energy as a result of the Tb accumulation on the surface of the nanoparticles. The average value of the surface energy density for the particles has been estimated as a function of Tb (Terbium) mole-fraction. The pressure coefficient of the band gap which is obtained from the variation of the band gap energy with the hydrostatic strain has been found to decrease significantly with the particle size for the ZnO nanoparticles. Structural and optical properties of the Tb-doped ZnO nanoparticles with average diameter 4 nm have been systematically investigated. Our X-ray diffraction (XRD) studies show a contraction of the ZnO lattice with the increase of the Tb mole-fraction x for x < 0.04 and an expansion beyond x = 0.04. The photoluminescence spectra are found to be comprised of a near band edge ultra violet luminescence (UVL) and a broad green luminescence (GL) band. Under the atmospheric condition, the intensity of the GL band is found to increase with the Tb mole-fraction over the entire doping range. On the other hand, under the vacuum condition, it has been observed that the GL intensity decreases with the increase of x up to x ~ 0.04 but further increase of x leads to a gradual revival of the GL emission. Our study suggests that for x < 0.04, GL results due to the physisorption of certain groups on the surface of the nanoparticles (GL-groups). It is also found that in this Tb mole-fraction regime, Tb incorporates mostly on the surface of the nanoparticles and affects the UVL to GL intensity ratio by influencing the attachment of the GL-groups. However, for x<0.04, GL originates not only from the GL-groups but also from certain point defects, which are likely to be generated due to the incorporation of Tb in the core of the nanoparticles. A simple rate equation model is introduced to get a quantitative understanding about the variation of the density of the centers responsible for the GL emission as a function of x under the atmospheric and the vacuum conditions.
References
Ashtaputre, S. S., Nojima, A., Marathe, S. K., Matsumara, D., Ohta, T., Tiwari, R., Dey, G. K., & Kulkarni, S. K. (2008). Investigations of white light emitting europium doped zinc oxide nanoparticles. Journal of Physics. D, 41, 015301.
Chen, S. J., Liu, Y. C., Shao, C. L., Xu, C. S., Liu, Y. X., Wang, L. W., Liu, B. B., & Zou, G. T. (2006). Photoluminescence of wurtzite ZnO under hydrostatic pressure. Journal of Applied Physics, 99(6), 066102. https://doi.org/10.1063/1.2177928
Dakhel, A. A., & El-Hilo, M. E. (2010). Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation. Journal of Applied Physics, 107(12), 123905. https://doi.org/10.1063/1.3448026
Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V. F., & Ploog, K. H. (2005). Colossal magnetic moment of Gd in GaN. Physical Review Letters, 94(3), 037205. https://doi.org/10.1103/PhysRevLett.94.037205
Dingreville, R., Qu, J., & Cherkaoni, M. (2005). Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids, 53(8), 1827–1854. https://doi.org/10.1016/j.jmps.2005.02.012
Gavryushin, V., & G. Racˇiukai tis, D. Juodzˇbalis, A. Kazlaulskas, V. Kuberti vicˇius, (1994) Characterization of intrinsic and impurity deep levels in ZnSe and ZnO crystals by nonlinear spectroscopy, J. Cryst. Growth, 138, 924.
Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., & Wong, G. K. L. (2000). Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Applied Physics Letters, 76(20), 2901–2903. https://doi.org/10.1063/1.126511
Hao, Y.-M., Lou, S.-Y., Zhou, S.-M., Yuan, R.-J., Zhu, G.-Y., Li, N., (2012). Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles, Nanoscale res. Lett., 7, 100.
Kobiakov, I. B. (1980). Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Communications, 35(3), 305–310. https://doi.org/10.1016/0038-1098(80)90502-5
Kröger, F. A. (1974). The Chemistry of Imperfect Crystals: Applications of imperfection chemistry, solid state reactions and electrochemistry, Volume 3, North-Holland.
Li, G. R., Dawa, C. R., Lu, X. H., Yu, X. L., & Tong, Y. X. (2009). Use of additives in the electrodeposition of nanostructured Eu3+/ZnO films for photoluminescent devices. Langmuir, 25(4), 2378–2384. https://doi.org/10.1021/la801601g
Li, J., Li, G. H., Xia, J. B., Zhang, J. B., Lin, Y., & Xiao, X. R. (2001). Optical spectra of CdSe nanocrystals under hydrostatic pressure. Journal of Physics: Condensed Matter, 13(9), 2033–2043. https://doi.org/10.1088/0953-8984/13/9/327
Liu, S. M., Liu, F. Q., & Wang, Z. G. (2001). Relaxation of carriers in terbium-doped ZnO nanoparticles. Chemical Physics Letters, 343(5–6), 489–492. https://doi.org/10.1016/S0009-2614(01)00740-0
Liu, X., Wu, X., Cao, H., & Chang, R. P. H. (2004). Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 95(6), 3141–3147. https://doi.org/10.1063/1.1646440
Look, D. C., Farlow, G. C., Reunchan, P., Limpijumnong, S., Zhang, S. B., & Nordlund, K. (2005). Evidence for native-defect donors in n-type ZnO. Physical Review Letters. SB, 95(22), 225502. https://doi.org/10.1103/PhysRevLett.95.225502
Look, D. C., Hemsky, J. W., & Sizelove, J. R. (1999). Residual Native Shallow Donor in ZnO. Physical Review Letters, 82(12), 2552–2555. https://doi.org/10.1103/PhysRevLett.82.2552
Mahamuni, S., Borgohain, K., Bendre, B. S., Leppert, V. J., & Risbud, S. H. (1999). Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. Journal of Applied Physics, 85(5), 2861–2865. https://doi.org/10.1063/1.369049
Mang, A., Reimann, K., & Rübenacke, St. (1995). Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. Solid State Communications, 94(4), 251–254. https://doi.org/10.1016/0038-1098(95)00054-2
Meng, X. Q., Shen, D. Z., Zhang, J. Y., Zhao, D. X., Lu, Y. M., Dong, L., Zhang, Z. Z., Liu, Y. C., & Fan, X. W. (2005). The structural and optical properties of ZnO nanorod arrays. Solid State Communications, 135(3), 179–182. https://doi.org/10.1016/j.ssc.2005.04.015
Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, 30(9), 244–247. https://doi.org/10.1073/pnas.30.9.244
Ng, H. T., Chen, B., Li, J., Han, J., Meyyappan, M., Wu, J., Li, S. X., & Haller, E. E. (2003). Optical properties of single-crystalline ZnO nanowires on m -sapphire. Applied Physics Letters, 82(13), 2023–2025. https://doi.org/10.1063/1.1564870
Ouyang, G., Li, X. L., Tan, X., & Yang, G. W. (2006). Size-induced strain and stiffness of nanocrystals. Applied Physics Letters, 89(3), 031904. https://doi.org/10.1063/1.2221897
Peres, M., Cruz, A., Pereira, S., Correia, M. R., Soares, M. J., Neves, A., Carmo, M. C., Monteiro, T., Pereira, A. S., Martins, M. A., Trindade, T., Alves, E., Nobre, S. S., & Sá Ferreira, R. A. (2007). Optical studies of ZnO nanocrystals doped with Eu3+ ions. Applied Physics A, 88(1), 129–133. https://doi.org/10.1007/s00339-007-3941-9
Perlin, P., Suski, T., Ager, J. W. III, Conti, G., Polian, A., Christensen, N. E., Gorczyca, I., Grzegory, I., Weber, E. R., & Haller, E. E. (1999). Transverse effective charge and its pressure dependence in GaN single crystals. Physical Review. Part B, 60(3), 1480–1483. https://doi.org/10.1103/PhysRevB.60.1480
Phan, T.L., Yu, S.C., Nghia, N.X. and Lam, V.D. (2010) Resonant Raman Scattering in ZnO Nanostructures Annealed at Different temperatures. Journal of the Korean Physical Society, 57, 1569-1573. https://doi.org/10.3938/jkps.57.1569
Sharma, A., Dhar, S., & Singh, B. P. (2013). Role of the surface polarity in governing the luminescence properties of ZnO nanoparticles synthesized by Sol–gel route. Applied Surface Science, 273, 144–149. https://doi.org/10.1016/j.apsusc.2013.01.215
Sharma, P. K., Pandey, A. C., Zolnierkiewicz, G., Guskos, N., & Rudowicz, C. (2009). Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: A spectroscopic view. Journal of Applied Physics, 106(9), 094314. https://doi.org/10.1063/1.3256000
Tuomisto, F., Ranki, V., Saarinen, K., & Look, D. C. (2003). Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Physical Review Letters, 91(20), 205502. https://doi.org/10.1103/PhysRevLett.91.205502
Wang, R. C., Liu, C. P., Huang, J. L., & Chen, S. J. (2005). ZnO symmetric nanosheets integrated with nanowalls, Applied Physics Letters, 87, 053103.
Wang, R. P., Xu, G., & Jin, P. (2004). Size dependence of electron-phonon coupling in ZnO nanowires. Physical Review. Part B, 69(11), 113303. https://doi.org/10.1103/PhysRevB.69.113303
Yang, L., Wang, X., Li, Z., Li, P., Liu, F., Ge, S., Song, B. F., Liu, S., & Zhang, R. J. (2011). (Er, Yb)-co-doped multifunctional ZnO transparent hybrid materials: fabrication, luminescent and magnetic properties, J. Appl. Phys. D. 44, 155404.
Zardo, I., Yazji, S., Marini, C., Uccelli, E., Morral, A., Abstreiter, G. and Postorino, P. (2012) Pressure Tuning of the Optical Properties of GaAs Nanowires, ACS Nano, 6, 3284-3291. https://doi.org/10.1021/nn300228u.
Zhang, S. B., Wei, S.-H., & Zunger, A. (2001). Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Physical Review. B, 63, 075205.