Exploring the Versatility of Nanoparticles: Synthesis, Characterization, and Emerging Applications
DOI:
https://doi.org/10.70130/CAST.2025.8207Keywords:
Nanotechnology, Types of Nanoparticles, Preparation methodAbstract
Nanotechnology has its distinct and prominent effects; it has influenced every industry and assisted the scientific community in making numerous discoveries in the areas of agriculture, medicine, and other fields. Because of their higher efficiency and their versatile biological, physical, and chemical properties, nanomaterials have gained significance in advancements in technology. Nanomaterials are separated into various groups based on their dimensions, structure, protecting agent type, and site of origin. Innovative sustainable technologies that successfully produce nanoparticles have been developed in the area of nanotechnology. The current study provides comprehensive details on various types and classifications of nanomaterials, such as organic, inorganic, hybrid, and dimensionality-confined nanomaterials. Also described are both bottom-up and top-down methods for developing various types of nanomaterials. For scientists and professionals who are interested in the most recent developments in nanomaterials, it is a valuable source that illustrates the significance of further study in such a rapidly developing field. Looking at the recent developments, it’s obvious that many new avenues are emerging for both the creation and practical use of various types of nanomaterials.
UNSDGs: UNSDG 3: Good Health and Well-being, UNSDG 6: Clean Water and Sanitation, UNSDG 9: Industry, Innovation and Infrastructure, UNSDG 12: Responsible Consumption and Production, UNSDG 13: Climate Action.
References
Ali, N., Khanafer, M., & Al-Awadhi, H. (2022). Indigenous oil-degrading bacteria are more efficient in soil bioremediation than microbial consortium and active even in super-oil-saturated soils. Frontiers in Microbiology, 13, Article 950051. https://doi.org/10.3389/fmicb.2022.950051
Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007
Altammar, K. A. (2023). A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14, Article 1155622. https://doi.org/10.3389/fmicb.2023.1155622
Anu Mary Ealia, S., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263. https://doi.org/10.1088/1757-899X/263/3/032019’Golinska, P., Wypij, M., Ingle, A. P., Gupta, I., Dahm, H., & Rai, M. (2014). Biogenic synthesis of metal nanoparticles from Actinomycetes: Biomedical applications and cytotoxicity. Applied Microbiology and Biotechnology, 98(19), 8083–8097. https://doi.org/10.1007/s00253-014-5953-7
Banger, A., Kumari, A., Jangid, N. K., Jadoun, S., Srivastava, A., & Srivastava, M. (2025). A review on green synthesis and characterization of copper nanoparticles using plant extracts for biological applications. Environmental Technology Reviews, 14(1), 94–126. https://doi.org/10.1080/21622515.2025.2453950
Çiçek, S., & Nadaroglu, H. (2015). The use of nanotechnology in the agriculture. Advances in Nano Research, 3(4), 207–223. https://doi.org/10.12989/ANR.2015.3.4.207
Dhand, C., Dwivedi, N., Loh, X. J., Jie Ying, A. N., Verma, N. K., Beuerman, R. W., Lakshminarayanan, R., & Ramakrishna, S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances, 5(127), 105003–105037. https://doi.org/10.1039/C5RA19388E
Guo, D., Xie, G., & Luo, J. (2014). Mechanical properties of nanoparticles: Basics and applications. Journal of Physics. Part D, 47(1), Article 013001. https://doi.org/10.1088/0022-3727/47/1/013001
Han, Y., Zhang, L., & Yang, W. (2024). Synthesis of mesoporous silica using the sol–gel approach: Adjusting architecture and composition for novel applications. Nanomaterials, 14(11), 903. https://doi.org/10.3390/nano14110903
Holder, C. F., & Schaak, R. E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano, 13(7), 7359–7365. https://doi.org/10.1021/acsnano.9b05157
Kaul, S., Gulati, N., Verma, D., Mukherjee, S., & Nagaich, U. (2018). Role of nanotechnology in cosmeceuticals: A review of recent advances. Journal of Pharmaceutics, 2018, Article ID 3420204. https://doi.org/10.1155/2018/3420204
Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of Microbiological Methods, 163, Article 105656. https://doi.org/10.1016/j.mimet.2019.105656
Kohl, H., & Reimer, L. (2008). Transmission electron microscopy: Physics of image formation (5th ed.). Springer. https://doi.org/10.1007/978-0-387-40093-8
Kuznetsova, A., Domingues, P. M., Silva, T., Almeida, A., Zheludkevich, M. L., Tedim, J., Ferreira, M. G. S., & Cunha, A. (2017). Antimicrobial activity of 2-mercaptobenzothiazole released from environmentally friendly nanostructured layered double hydroxides. Journal of Applied Microbiology, 122(5), 1207–1218. https://doi.org/10.1111/jam.13433
Bhimwal, M. K., & Sharma, D. (2024). Nanosolutions for a Sustainable Tomorrow: Harnessing Nanomaterials for a Green Environment. Contemporary Advances in Science and Technology, 7(1), 1-14. https://doi.org/10.70130/CAST.2024.7101
Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003
Mukhtar, M., Munisa, L., & Saleh, R. (2012). Co-precipitation synthesis and characterization of nanocrystalline zinc oxide particles doped with Cu²⁺ ions. Materials Sciences and Applications, 3(8), 543–551. https://doi.org/10.4236/msa.2012.38077
Nimibofa, A., Newton, E. A., Cyprain, A. Y., & Donbebe, W. (2018). Fullerenes: Synthesis and applications. Journal of Materials Science Research, 7(3), 22–29. https://doi.org/10.5539/jmsr.v7n3p22
Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissues. Advanced Drug Delivery Reviews, 55(3), 329–347. https://doi.org/10.1016/S0169-409X(02)00228-4
Radulescu, D.-M., Surdu, V.-A., Ficai, A., Ficai, D., Grumezescu, A.-M., & Andronescu, E. (2023). Green synthesis of metal and metal oxide nanoparticles: A review of the principles and biomedical applications. International Journal of Molecular Sciences, 24(20), Article 15397. https://doi.org/10.3390/ijms242015397
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002
Ramesh, S. (2013). Sol–gel synthesis and characterization of nanoparticles. Journal of Nanoscience, 2013, Article ID 929321. https://doi.org/10.1155/2013/929321
Ramli, N. H., Mohamad Nor, N. M., Abu Bakar, A. H., Zakaria, N. D., Lockman, Z., & Abdul Razak, K. (2024). Platinum-based nanoparticles: A review of synthesis methods, surface functionalization, and their applications. Microchemical Journal, 200, Article 110280. https://doi.org/10.1016/j.microc.2024.110280
Reitstötter J. (1966). "Richard Zsigmondy". Kolloid-Zeitschrift und Zeitschrift für Polymere. 211 (1–2): 6–7. https://doi.org/10.1007/BF01500203.
Salavati-Niasari, M., Davar, F., & Mir, N. (2008). Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 27(17), 3514–3518. https://doi.org/10.1016/j.poly.2008.08.020
Saravanan, P., Gopalan, R., & Chandrasekaran, V. (2008). Synthesis and characterization of Nanomaterials. Defence Science Journal, 58(4), 504–516. https://doi.org/10.14429/dsj.58.1671
Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, ag, and bimetallic au core–ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496–502. https://doi.org/10.1016/j.jcis.2004.03.003
Singh, S., Behura, S. K., Kumar, A., & Verma, K. (2022). Nanomanufacturing and nanomaterials design: Principles and applications (pp. 45–62). CRC Press. https://doi.org/10.1201/9781003220602
Sinnott, S. B., & Andrews, R. (2001). Carbon nanotubes: Synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 26(3), 145–249. https://doi.org/10.1080/20014091104189
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x
Sun, Y., Li, M., Zheng, M., Zou, Y., & Shi, B. (2024). Blood–brain barrier penetrating nanosystems enable synergistic therapy of glioblastoma. Nano Today, 56, Article 102310. https://doi.org/10.1016/j.nantod.2024.102310
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [IUPAC technical report]. Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11(5), 2804–2837. https://doi.org/10.1039/D0RA09941D
Yin, B., Ma, H., Wang, S., & Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly(N-Vinylpyrrolidone). The Journal of Physical Chemistry B, 107(34), 8898–8904. https://doi.org/10.1021/jp0349031