Microbial Fabrication of Silver Nanoparticles: From Biosynthesis to Applications

Authors

  • Amber chopra Department of Chemistry, Kalinga University, Raipur, CT., India Author
  • Preeti Pandey Department of Chemistry, Kalinga University, Raipur, CT., India Author
  • Priyanka Gupta Department of Chemistry, Kalinga University, Raipur, CT., India Author

DOI:

https://doi.org/10.70130/CAST.2025.8104

Keywords:

silver nanoparticles (AgNP’s), intracellular, extracellular, bacteria

Abstract

Due to their affordability and environmental friendliness, green technology approaches are increasingly exploited to synthesize AgNPs. The manufacture of AgNP using biological methods, such as using plants, fungi, and bacteria as catalysts, is covered in several research studies. Using bacteria to synthesize AgNPs is the most appealing, straightforward, environmentally friendly, and economical source. As a result, more reports of AgNPs are being produced using various bacterial genera and species (both Gram-positive and negative). The variety of bacteria (both Gram-positive and Gram-negative) that can produce AgNPs and potential uses for AgNPs are discussed in this review article. Therefore, increasing the use of bacteria to produce AgNPs will be beneficial against pathogenic microbes and offer new possibilities and uses.

References

Ali, J., Hameed, A., Ahmed, S., Ali, M. I., Zainab, S., & Ali, N. (2016). Role of catalytic protein and stabilising agents in the transformation of Ag ions to nanoparticles by Pseudomonas aeruginosa. IET Nanobiotechnology, 10(5), 295–300. https://doi. https://doi.org/10.1049/iet-nbt.2015.0093

Al-Katib, M., Al-Shahri, Y., & Al-Niemi, A. (2015). Biosynthesis of silver nanoparticles by Cyanobacterium Gloeocapsa sp. International Journal of Enhanced Research in Science, Technology & Engineering, 4(9), 60–73.

Baldi, F., Daniele, S., Gallo, M., Paganelli, S., Battistel, D., Piccolo, O., Faleri, C., Puglia, A. M., & Gallo, G. (2016). Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells. Biometals, 29(2), 321–331. https://doi.org/10.1007/s10534-016-9918-4

Banu, A. N., Balasubramanian, C., & Moorthi, P. V. (2014). Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113(1), 311–316. https://doi.org/10.1007/s00436-013-3656-0

Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology, 42(11), 4133–4139. https://doi.org/10.1021/es7032718

Borase, H. P., Salunke, B. K., Salunkhe, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Plant extract: A promising Biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology, 173(1), 1–29. https://doi.org/10.1007/s12010-014-0831-4

Borkow, G., & Lapidot, A. (2005). Multi-targeting the entrance door to block HIV-1. Current Drug Targets. Infectious Disorders, 5(1), 3–15. https://doi.org/10.2174/1568005053174645

Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yéprémian, C., Coradin, T., Livage, J., Fiévet, F., & Couté, A. (2007). Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. Journal of Nanoscience and Nanotechnology, 7(8), 2696–2708. https://doi.org/10.1166/jnn.2007.600

Buszewski, B., Railean-Plugaru, V., Pomastowski, P., Rafińska, K., Szultka-Mlynska, M., Golinska, P., Wypij, M., Laskowski, D., & Dahm, H. (2018). Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of Microbiology, Immunology, and Infection, 51(1), 45–54. https://doi.org/10.1016/j.jmii.2016.03.002

Chumpol, J., & Siri, S. (2017). Simple green production of silver nanoparticles facilitated by bacterial genomic DNA and their antibacterial activity. Artificial Cells, Nanomedicine and Biotechnology, 1–7, Article 1332638. https://doi.org/10.1080/21691401.2017

Deepa, S., Kanimozhi, K., & Panneerselvam, A. (2013). Antimicrobial activity of extracellularly synthesized silver nano- particles from marine derived actinomycetes. International Journal of Current Microbiology and Applied Sciences, 2, 223–230.

Dhoondia, Z. H., & Chakraborty, H. (2012). Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomaterials and Nanotechnology, 2, 1–7.

Du, J., Singh, H., & Yi, T.-H. (2017). Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 211–217. https://doi.org/10.1080/21691401.2016.1178135.

El-Batal, A. I., Hashem, A.-A. M., & Abdelbaky, N. M. (2013). Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimi- crobial activity. SpringerPlus, 2(1), 129. https://doi.org/10.1186/2193-1801-2-129

Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp.,nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Frontiers in Microbiology, 6, 453. https://doi.org/10.3389/fmicb.2015.00453

El-Shanshoury, A. E.-R. R., ElSilk, S. E., & Ebeid, M. E. (2011). Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activi- ties. ISRN Nanotechnology, 2011, 1–7. https://doi.org/10.5402/2011/385480

Fesharaki, P. J., Nazari, P., Shakibaie, M., Rezaie, S., Banoee, M., Abdollahi, M., & Shahverdi, A. R. (2010). Biosynthesis of Selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian Journal of Microbiology, 41(2), 461–466. https://doi.org/10.1590/S1517-838220100002000028

Gahlawat, G., Shikha, S., Chaddha, B. S., Chaudhuri, S. R., Mayilraj, S., & Choudhury, A. R. (2016). Microbial glycolipoprotein-capped silver nanoparticles as emerging antibac- terial agents against cholera. Microbial Cell Factories, 15, 25. https://doi.org/10.1186/s12934-016-0422-x

Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with flucon- azole. Nanomedicine, 5(4), 382–386. https://doi.org/10.1016/j. nano.2009.06.005.

Golińska, P., Wypij, M., Rathod, D., Tikar, S., Dahm, H., & Rai, M. (2016). Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibac- terial activities. Journal of Basic Microbiology, 56(5), 541–556. https://doi.org/10.1002/jobm.201500516

Govindaraju, K., Basha, S. K., Kumar, V. G., & Singaravelu, G. (2008). Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 43(15), 5115–5122. https://doi.org/10.1007/s10853-008-2745-4

Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. V. B. (2012). Novel microbial route to synthesize ZnO nano- particles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 90, 78–84. https://doi.org/10.1016/j.saa.2012.01.006

Jo, J. H., Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R., Jin, C.-G., & Yang, D. C. (2016). Pseudomonas deceptionensis DC5- mediated synthesis of extracellular silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 44(6), 1576–1581. https://doi.org/10.3109/21691401.2015.1068792

Juibari, M. M., Abbasalizadeh, S., Jouzani, G. S., & Noruzi, M. (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Materials Letters, 65(6), 1014–1017. https://doi.org/10.1016/j. matlet.2010.12.056

Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S., Kottaisamy, M., BarathmaniKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanopar- ticles using Brevibacterium casei. Colloids and Surfaces. B, Biointerfaces, 77(2), 257–262. https://doi.org/10.1016/j.colsurfb.2010.02.007

Kalpana, D., & Lee, Y. S. (2013). Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simu- lated microgravity grown Klebsiella pneumoniae. Enzyme and Microbial Technology, 52(3), 151–156. https://doi.org/10.1016/j.enzmictec.2012.12.006

Kang, Y. O., Jung, J.-Y., Cho, D., Kwon, O. H., Cheon, J. Y., & Park, W. H. (2016). Antimicrobial silver chloride nanoparticles stabilized with chitosan oligomer for the healing of burns. Materials, 9(4), 215. https://doi.org/10.3390/ma9040215

Kannan, N., Mukunthan, K. S., & Balaji, S. (2011). A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloids and Surfaces. B, Biointerfaces, 86(2), 378–383. https://doi.org/10.1016/j.colsurfb.2011.04.024

Karthik, C., & Radha, K. V. (2012). Biosynthesis and character- zation of silver nanoparticles using Enterobacter aerogenes: A kinetic approach. Digest Journal of Nanomaterials and Biostructures, 7, 1007–1014.

Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13611–13614. https://doi.org/10.1073/pnas.96.24.13611

Krishnaraj, R. N., & Berchmans, S. (2013). In vitro antiplatelet activity of silver nanoparticles synthesized using the microorgan- ism Gluconobacter roseus: An AFM-based study. RSC Advances, 3(23), 8953–8959. https://doi.org/10.1039/c3ra41246f

Kulkarni, R. R., Shaiwale, N. S., Deobagkar, D. N., & Deobagkar, D. D. (2015). Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactive- ity. International Journal of Nanomedicine, 10, 963–974. https://doi.org/10.2147/IJN.S72888

Kumar, C. G., & Mamidyala, S. K. (2011). Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces. B, Biointerfaces, 84(2), 462–466. https://doi.org/10.1016/j.colsurfb.2011.01.042

Kumari, R., Barsainya, M., & Singh, D. P. (2017). Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environmental Science and Pollution Research International, 24(5), 4645–4654. https://doi.org/10.1007/s11356-016-8170-3

Kushwaha, A., Singh, V. K., Bhartariya, J., Singh, P., & Yasmeen, K. (2015). Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: Characterization of the particles and study of antibacterial activity. European Journal of Experimental Biology, 5(1), 65–70.

Law, N., Ansari, S., Livens, F. R., Renshaw, J. C., & Lloyd, J. R. (2008). Formation of nanoscale elemental silver particles via en- zymatic reduction by Geobacter sulfurreducens. Applied and Environmental Microbiology, 74(22), 7090–7093. https://doi.org/10.1128/AEM.01069-08

Manikprabhu, D., Cheng, J., Chen, W., Sunkara, A. K., Mane, S. B., Kumar, R., Das, M., N Hozzein, W., Duan, Y.-Q., & Li, W.-J. (2016). Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology. B, Biology, 158, 202–205. https://doi.org/10.1016/j.jphotobiol.2016.01.018

Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S.-K. (2013). Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Research International, 2013, Article 287638. https://doi.org/10.1155/2013/287638

Mohammed Fayaz, A., Girilal, M., Rahman, M., Venkatesan, R., & Kalaichelvan, P. T. (2011). Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochemistry, 46(10), 1958–1962. https://doi.org/10.1016/j.procbio.2011.07.003

Mohanta, Y. K., & Behera, S. K. (2014). Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37(11), 2263–2269. https://doi.org/10.1007/s00449-014-1205-6

Mu, H., Tang, J., Liu, Q., Sun, C., Wang, T., & Duan, J. (2016). Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Scientific Reports, 6, Article 18877. https://doi.org/10.1038/srep18877

Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800. https://doi.org/10.1021/la9502711

Naik, M. M., Prabhu, M. S., Samant, S. N., Naik, P. M., & Shirodkar, S. (2017). Synergistic action of silver nanoparticles synthesized from silver resistant estuarine Pseudomonas aeruginosa strain SN5 with antibiotics against antibiotic resistant bacterial human pathogens. Thalassas: An International Journal of Marine Sciences, 33(1), 73–80. https://doi.org/10.1007/s41208-017-0023-4

Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nano- particles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology, and Medicine, 5(4), 452–456. https://doi.org/10.1016/j.nano.2009.01.012

Otari, S. V., Patil, R. M., Ghosh, S. J., Thorat, N. D., & Pawar, S. H. (2015). Intracellular synthesis of silver nanoparticle by Actinobacteria and its antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 136(B), 1175–1180. https://doi.org/10.1016/j.saa.2014.10.003

Oves, M., Khan, M. S., Zaidi, A., Ahmed, A. S., Ahmed, F., Ahmad, E., Sherwani, A., Owais, M., & Azam, A. (2013). Antibacterial and cytotoxic efficacy of extracellular silver nano- particles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLOS One, 8(3), Article e59140. https://doi.org/10.1371/journal.pone.0059140

Parikh, R. Y., Ramanathan, R., Coloe, P. J., Bhargava, S. K., Patole, M. S., Shouche, Y. S., & Bansal, V. (2011). Genus-wide physicochemical evidence of extracellular crystalline silver nano- particles biosynthesis by Morganella spp. PLOS One, 6(6), Article e21401. https://doi.org/10.1371/journal.pone.0021401

Peiris, M. K., Gunasekara, C. P., Jayaweera, P. M., Arachchi, N. D. H., & Fernando, N. (2017). Biosynthesized silver nanoparticles: Are they effective antimicrobials? Memórias do Instituto Oswaldo Cruz, 112(8), 537–543. https://doi.org/10.1590/0074-02760170023

Pourali, P., & Yahyaei, B. (2016). Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements, 34, 22–31. https://doi.org/10.1016/j.jtemb.2015.11.004

Prakash, A., Sharma, S., Ahmad, N., Ghosh, A., & Sinha, P. (2011). Synthesis of Agnps By Bacillus Cereus Bacteria and Their Antimicrobial Potential. Journal of Biomaterials and Nanobiotechnology, 2(2), 155–161. https://doi.org/10.4236/jbnb.2011.22020

Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., MubarakAli, D., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its bio- medical application. Colloids and Surfaces. B, Biointerfaces, 102, 232–237. https://doi.org/10.1016/j.colsurfb.2012.08.018

Pugazhenthiran, N., Anandan, S., Kathiravan, G., Udaya Prakash, N. K., Crawford, S., & Ashokkumar, M. (2009). Microbial syn- thesis of silver nanoparticles by Bacillus sp. Journal of Nanoparticle Research, 11(7), 1811–1815. https://doi.org/10.1007/s11051-009-9621-2

Punjabi, K., Yedurkar, S., Doshi, S., Deshapnde, S., & Vaidya, S. (2017). Biosynthesis of silver nanoparticles by Pseudomonas spp. isolated from effluent of an electroplating industry. IET Nanobiotechnology, 11(5), 584–590. https://doi.org/10.1049/iet-nbt.2016.0172

Quinteros, M. A., Aiassa Martínez, I. M., Dalmasso, P. R., & Páez, P. L. (2016). Silver nanoparticles: Biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. International Journal of Biomaterials, 2016, Article 5971047. https://doi.org/10.1155/2016/5971047

Railean-Plugaru, V., Pomastowski, P., Wypij, M., Szultka-Mlynska, M., Rafinska, K., Golinska, P., Dahm, H., & Buszewski, B. (2016). Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. Journal of Applied Microbiology, 120(5), 1250–1263. https://doi.org/10.1111/jam.13093

Rane, A. N., Baikar, V. V., Ravi Kumar, V., & Deopurkar, R. L. (2017). Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Frontiers in Microbiology, 8, 492. https://doi.org/10.3389/fmicb.2017.00492

Rasulov, B., Rustamova, N., Yili, A., Zhao, H.-Q., & Aisa, H. A. (2016). Synthesis of silver nanoparticles on the basis of low and high molar mass exopolysaccharides of Bradyrhizobium japonicum 36 and its antimicrobial activity against some pathogens. Folia Microbiologica (Praha), 61(4), 283–293. https://doi. https://doi.org/10.1007/s12223-015-0436-5

Rathod, D., Golinska, P., Wypij, M., Dahm, H., & Rai, M. (2016). A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Medical Microbiology and Immunology, 205(5), 435–447. https://doi.org/10.1007/s00430-016-0462-1

Rezvani Amin, Z., Khashyarmanesh, Z., & Fazly Bazzaz, B. S. (2016). Different behavior of Staphylococcus epidermidis in intra- cellular biosynthesis of silver and cadmium sulfide nanoparticles: More stability and lower toxicity of extracted nanoparticles. World Journal of Microbiology and Biotechnology, 32(9), 140. https://doi.org/10.1007/s11274-016-2110-8

Sadhasivam, S., Shanmugam, P., & Yun, K. (2010). Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimi- crobial activity against medically important pathogenic microor- ganisms. Colloids and Surfaces. B, Biointerfaces, 81(1), 358–362. https://doi.org/10.1016/j.colsurfb.2010.07.036

Saifuddin, N., Wong, C. W., & Yasumira, A. A. N. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry, 6(1), 61–70. https://doi.org/10.1155/2009/734264

Samadi, N., Golkaran, D., Eslamifar, A., Jamalifar, H., Fazeli, M. R., & Mohseni, F. A. (2009). Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. Journal of Biomedical Nanotechnology, 5(3), 247–253. https://doi.org/10.1166/jbn.2009.1029

Saravana Kumar, P., Balachandran, C., Duraipandiyan, V., Ramasamy, D., Ignacimuthu, S., & Al-Dhabi, N. A. (2015). Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 5(2), 169–180. https://doi.org/10.1007/s13204-014-0304-7

Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanopar- ticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports, 15, 33–40. https://doi.org/10.1016/j.btre.2017.02.006

Sathiyanarayanan, G., Seghal Kiran, G., & Selvin, J. (2013). Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids and Surfaces, Part B: Biointerfaces, 102, 13–20. https://doi.org/10.1016/j. colsurfb.2012.07.032

Seshadri, S., Prakash, A., & Kowshik, M. (2012). Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bulletin of Materials Science, 35(7), 1201–1205. https://doi.org/10.1007/s12034-012-0417-0

Shanthi, S., Jayaseelan, B. D., Velusamy, P., Vijayakumar, S., Chih, C. T., & Vaseeharan, B. (2016). Biosynthesis of silver nano- particles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia Cornuta. Microbial Pathogenesis, 93, 70–77. https://doi.org/10.1016/j. micpath.2016.01.014

Singh, H., Du, J., & Yi, T.-H. (2017). Biosynthesis of silver nano- particles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes. Artificial Cells, Nanomedicine, and Biotechnology, 45(3), 584–590. https://doi. https://doi.org/10.3109/21691401.2016.1163715

Singh, P., Kim, Y. J., Singh, H., Mathiyalagan, R., Wang, C., & Yang, D. C. (2015). Biosynthesis of anisotropic silver nanoparti- Cles by Bhargavaea indica and their synergistic effect with antibi- otics against pathogenic microorganisms. Journal of Nanomaterials, 2015(1), 10. https://doi.org/10.1155/2015/234741

Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R., & Yang, D. C. (2016). Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artificial Cells, Nanomedicine, and Biotechnology, 44(6), 1569–1575. https://doi.org/10.3109/21691401.2015.1064937

Singh, P., Singh, H., Kim, Y. J., Mathiyalagan, R., Wang, C., & Yang, D. C. (2016). Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme and Microbial Technology, 86, 75–83. https://doi.org/10.1016/j.enzmictec.2016.02.005

Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99(11), 4579–4593. https://doi.org/10.1007/s00253-015-6622-1

Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W., & Boon, N. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 84(4), 741–749. https://doi.org/10.1007/s00253-009-2032-6

Srivastava, S. K., & Constanti, M. (2012). Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. Journal of Nanoparticle Research, 14(4), 1–10. https://doi.org/10.1007/s11051-012-0831-7

Syed, B., M N, N. P., B L, D., K, M. K., S, Y., & S, S. (2016). Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzyme and Microbial Technology, 95, 128–136. https://doi.org/10.1016/j.enzmictec.2016.10.004

Tamboli, D. P., & Lee, D. S. (2013). Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Journal of Hazardous Materials, 260, 878–884. https://doi.org/10.1016/j.jhazmat.2013.06.003

Thomas, R., Janardhanan, A., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Antibacterial proper- ties of silver nanoparticles synthesized by marine Ochrobactrum sp. Brazilian Journal of Microbiology, 45(4), 1221–1227. https://doi.org/10.1590/s1517-83822014000400012

Tsibakhashvili, N. Y., Kirkesali, E. I., Pataraya, D. T., Gurielidze, M. A., Kalabegishvili, T. L., Gvarjaladze, D. N., Tsertsvadze, G. I., Frontasyeva, M. V., Zinicovscaia, I. I., Wakstein, M. S., Khakhanov, S. N., Shvindina, N. V., & Shklover, V. Y. (2011). Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Advanced Science Letters, 4(11), 3408–3417. https://doi.org/10.1166/asl.2011.1915

Verma, S. K., Jha, E., Panda, P. K., Mishra, A., Thirumurugan, A., Das, B., Parashar, S. K. S., & Suar, M. (2018). Rapid novel facile biosynthesized Silver nanoparticles from Bacterial release induce biogenicity and concentration de- pendent in vivo cytotoxicity with embryonic zebrafish—A mechanistic insight. Toxicological Sciences, 161(1), 125–138. https://doi.org/10.1093/toxsci/kfx204

Viorica, R.-P., Pawel, P., Kinga, M., Michal, Z., Katarzyna, R., & Boguslaw, B. (2017). Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Applied Microbiology and Biotechnology, 101(19), 7141–7153. https://doi.org/10.1007/s00253-017-8443-x

Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine, and Biotechnology, 44(4), 1127–1132. https://doi. https://doi.org/10.3109/21691401.2015.1011805

Wang, C., Singh, P., Kim, Y. J., Mathiyalagan, R., Myagmarjav, D., Wang, D., Jin, C.-G., & Yang, D. C. (2016). Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens. Artificial Cells, Nanomedicine, and Biotechnology, 44(7), 1714–1721. https://doi. https://doi.org/10.3109/21691401.2015.1089253

Wypij, M., Golinska, P., Dahm, H., & Rai, M. (2017). Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria. IET Nanobiotechnology, 11(3), 336–342. https://doi.org/10.1049/iet-nbt.2016.0112

Yumei, L., Yamei, L., Qiang, L., & Jie, B. (2017). Rapid BioSyn- thesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from Arthrobacter sp. Journal of Nanomaterials, 2017, 9703614, B4: its antimicro- bial activity and phytotoxicity. https://doi.org/10.1155/2017/9703614

Zaki, S., El Kady, M. F., & Abd-El-Haleem, D. (2011). Biosynthesis and structural characterization of silver nanoparti- Cles from bacterial isolates. Materials Research Bulletin, 46(10), 1571–1576. https://doi.org/10.1016/j.materresbull.2011.06.025

Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., & Zheng, S. (2005). Biosorption and bioreduction of diamine silver complex by Corynebacterium. Journal of Chemical Technology and Biotechnology, 80(3), 285–290. https://doi.org/10.1002/jctb.1191

Downloads

Published

2025-03-03

Issue

Section

Reviews

How to Cite

chopra, amber, Pandey, P., & Gupta, priyanka. (2025). Microbial Fabrication of Silver Nanoparticles: From Biosynthesis to Applications. Contemporary Advances in Science and Technology, 8(1), 38-52. https://doi.org/10.70130/CAST.2025.8104

Plaudit