Applications of Nanocomposites in Removal of Dyes from Wastewater: A Critical Review
DOI:
https://doi.org/10.70130/RCS.2025.0201002Keywords:
Nanocomposite, Dyes, Mechanism, wastewater, dye removal.Abstract
Contamination of water by synthetic dyes due to industrial activities is a pressing environmental issue. These dyes are toxic, nonbiodegradable, and pose severe risks to ecosystems and human health. Nanocomposite materials are increasingly recognized for their outstanding capacity to eliminate synthetic dyes from wastewater. By combining exceptionally large surface areas with customizable surface chemistry and catalytic properties, composites such as graphene oxide, zinc oxide, and silver nanoparticles can remove dyes through both adsorption and light-driven degradation processes. Although studies often report removal efficiencies above 90%, real-world implementation is challenged by high production costs, difficulties in scaling up, and concerns over nanoparticle release into the environment. To address these hurdles, researchers are developing greener, more scalable fabrication methods like microwave‑assisted synthesis—to reduce energy consumption and improve material uniformity. At the same time, process optimization models are being applied to fine‑tune reaction conditions and enhance performance under practical treatment scenarios. This comprehensive review provides valuable insights into the current state and future prospects of nanocomposite-based dye removal techniques for sustainable wastewater treatment.
UNSDG Goals: SDG 3, SDG 6, SDG 9, SDG 12, SDG 13.
References
Ahmad, R., & Kumar, R. (2010). Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. Applied Surface Science, 257(5), 1628–1633. https://doi.org/10.1016/j.apsusc.2010.08.111
Al-Rawashdeh, N. A. F., Allabadi, O., & Aljarrah, M. T. (2020). Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega, 5(43), 28046–28055. https://doi.org/10.1021/acsomega.0c03608
Ates, M., Eker, A. A., & Eker, B. (2017). Carbon nanotube-based nanocomposites and their applications. Journal of Adhesion Science and Technology, 31(18), 1977–1997. https://doi.org/10.1080/01694243.2017.1295625
Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide (TiO₂/Fe₃O₄) based nanocomposites for the removal of methylene blue. Applied Surface Science, 439, 560–568. https://doi.org/10.1016/j.apsusc.2018.01.140
Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment: A review. Chemical Engineering Journal, 157(2–3), 277–296. https://doi.org/10.1016/j.cej.2010.01.007
Bogue, R. (2011). Nanocomposites: A review of technology and applications. Assembly Automation, 31(2), 106–112. https://doi.org/10.1108/01445151111117683
Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39. https://doi.org/10.1590/S1516-14392009000100002
Chong, M. N., Tneua, Z. Y., Poh, P. E., Jin, B., & Aryal, R. (2015). Synthesis, characterisation and application of TiO₂–zeolite nanocomposites for the advanced treatment of industrial dye wastewater. Journal of the Taiwan Institute of Chemical Engineers, 50, 288–296. https://doi.org/10.1016/j.jtice.2014.12.013
Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
Dai, M., Zhou, G., Ng, H. Y., Zhang, J., Wang, Y., Li, N., Qi, X., Miao, M., Liu, Q., & Kong, Q. (2019). Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. Journal of Environmental Management, 250, Article 109519. https://doi.org/10.1016/j.jenvman.2019.109519
Fahim, M., Shahzaib, A., Nishat, N., Jahan, A., Bhat, T. A., & Inam, A. (2024). Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open, 16, Article 100125. https://doi.org/10.1016/j.jciso.2024.100125
Farhan, A., Zulfiqar, M., Samiah, Rashid, E. U., Nawaz, S., Iqbal, H. M. N., Jesionowski, T., Bilal, M., & Zdarta, J. (2023). Removal of toxic metals from water by nanocomposites through advanced remediation processes and photocatalytic oxidation. Current Pollution Reports, 9(3), 338–358. https://doi.org/10.1007/s40726-023-00253-y
Mishra, R., & Militky, J. (2013). Nanocomposites. Journal of Materials Processing Technology, 213(4), 647–654. https://doi.org/10.1080/00405000.2013.812266
Mittal, H., Maity, A., & Ray, S. S. (2016). Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions. Applied Surface Science, 364, 917–930. https://doi.org/10.1016/j.apsusc.2015.12.241
Mohammadzadeh Pakdel, P., Peighambardoust, S. J., Arsalani, N., & Aghdasinia, H. (2022). Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly(acrylic acid-co-itaconic acid) nanocomposite hydrogel. Environmental Research, 212(Pt B), Article 113201. https://doi.org/10.1016/j.envres.2022.113201
Mostafa, M. H., Elsawy, M. A., Darwish, M. S. A., Hussein, L. I., & Abdaleem, A. H. (2020). Microwave-Assisted preparation of Chitosan/ZnO nanocomposite and its application in dye removal. Materials Chemistry and Physics, 248, Article 122914. https://doi.org/10.1016/j.matchemphys.2020.122914
Nambiar, R. B., Perumal, A. B., & Sadiku, E. R. (2024). Advances in nanocomposites: Preparation, characterization, properties, and applications. Molecules, 29(24), Article 5924. https://doi.org/10.3390/molecules29245924
Omanović-Mikličanin, E., Badnjević, A., Kazlagić, A., & Hajlovac, M. (2020). Nanocomposites: Brief review. Health Technology, 10 (1), 51–59. https://doi.org/10.1007/s12553-019-00380-x
Omidvar, A., Jaleh, B., & Nasrollahzadeh, M. (2017). Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water. J. Colloid Interface Sci, 496, 44–50. https://doi.org/10.1016/j.jcis.2017.01.113
Oyewo, O. A., Elemike, E. E., Onwudiwe, D. C., & Onyango, M. S. (2020). Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal of Biological Macromolecules, 164, 2470–2487.https://doi.org/10.1016/j.ijbiomac.2020.08.074
Pai, S., Kini, M. S., & Selvaraj, R. (2021). A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environmental Science and Pollution Research, 28(10), 11835–11849. https://doi.org/10.1007/s11356-019-07319-9
Palani, G., Trilaksana, H., Sujatha, R. M., Kannan, K., Rajendran, S., Korniejenko, K., Nykiel, M., & Uthayakumar, M. (2023). Silver nanoparticles for wastewater management. Molecules, 28(8), Article 3520. https://doi.org/10.3390/molecules28083520
Rajani, A., Chauhan, P., & Dave, P. Y. (2021). Nanocomposites: A new tendency of structures in nanotechnology and material science. Journal of Nanoscience and Technology, 7(1), 21–26. https://doi.org/10.30799/jnst.315.21070103
Ren, Y., Abbood, H. A., He, F., Peng, H., & Huang, K. (2013). Magnetic EDTA-modified chitosan/SiO₂/Fe₃O₄ adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal, 226, 300–311. https://doi.org/10.1016/j.cej.2013.04.059
Rustembekkyzy, K., Sabyr, M., Kanafin, Y. N., Khamkhash, L., & Atabaev, T. Sh. (2024). Microwave-assisted synthesis of ZnO structures for effective degradation of methylene blue dye under solar light illumination. RSC Advances, 14(26), 16293–16299. https://doi.org/10.1039/D4RA02451F
Singh, S., Barick, K. C., & Bahadur, D. (2013). Fe₃O₄ embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. Journal of Materials Chemistry A, 1(10), 3325–3333. https://doi.org/10.1039/C2TA01045C
Sonawane, G. H., Patil, S. P., & Sonawane, S. H. (2021). Nanocomposites and their applications. In Y.-W. Mai & Z.-Z. Yu (Eds.), Nanocomposites: Volume 1: Synthesis, structure, properties and new application opportunities (pp. 1–20). Elsevier. https://doi.org/10.1016/B978-0-08-101971-9.00001-6
Sun, Z., Yao, G., Liu, M., & Zheng, S. (2017). In situ synthesis of magnetic MnFe₂O₄/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 71, 501–509. https://doi.org/10.1016/j.jtice.2016.12.013
Downloads
Published
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Issue
Section
Categories
License
Copyright (c) 2025 RSYN Chemical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.