Metal Organic Frameworks as Versatile Materials for Energy Storage, Environmental Remediation, and Catalytic Applications
DOI:
https://doi.org/10.70130/RCS.2024.0101003Keywords:
metal-organic frameworks, heterojunction,, composite, doping, photoelectrochemistry, photoelectronic deviceAbstract
Metal organic Framework is a family of 2D transition-metal carbides and nitrides, and has emerged as promising materials for a wide range of applications, particularly in electro- and photocatalytic water splitting for hydrogen generation. Their unique structure, large surface area, metallic conductivity, and surface terminations offer numerous advantages in enhancing catalytic activity. Metal organic framework compounds are also called MXene. This review provides a detailed examination of the organic framework of metals and their properties, including their synthesis methods, structural features, and surface chemistry. Recent advances in MXene-based composites, especially MXene-TiO2 and MXene/metal composites, are also discussed for improved water splitting efficiency. Challenges such as weak environmental stability, limited intrinsic catalytic activity, and charge recombination are highlighted along with strategies for overcoming these limitations. Finally, the future outlook of MXene-based materials for scalable, sustainable hydrogen production is presented. This review summarizes the most recent breakthroughs and predicts the prospects of MOFs for heterojunctions, composites, doping, and other technologies that enhance their capabilities. This review provides a comprehensive overview of the present state of research on MOFs and emphasizes their prospective applications in materials science, energy science, environmental science, photoelectrochemistry, and photoelectronic devices.
References
Alguacil, F. J., & Escudero, E. (2022). ‘The removal of toxic metals from liquid effluents by ion exchange resins. Part XVIII: Vanadium(V),’ H+/Amberlite 958. Revista de Metalurgia, 58(3), 1-4. https://doi.org/10.3989/revmetalm.227
Bueken, B., Van Velthoven, N., Willhammar, T., Stassin, T., Stassen, I., Keen, D. A., Baron, G. V., Denayer, J. F. M., Ameloot, R., Bals, S., De Vos, D. & Bennett, T. D. (2017). Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 8(5), 3939–3948. https://doi.org/10.1039/c6sc05602d
Carson, F., Agrawal, S., Gustafsson, M., Bartoszewicz, A., Moraga, F., Zou, X., & Martín-Matute, B. (2012). Ruthenium complexation in an aluminium metal–organic framework and its application in alcohol oxidation catalysis. Chemistry, 18(48), 15337–15344. https://doi.org/10.1002/chem.201200885
Chen, J., Shu, Y., Li, H., Xu, Q., & Hu, X. (November 1, 2018). 2D nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta, 189, 254–261. https://doi.org/10.1016/j.talanta.2018.06.075
Dhaka, S., Kumar, R., Deep, A., Kurade, M. B., Ji, S.-W., & Jeon, B.-H. (2019). Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews, 380, 330–352. https://doi.org/10.1016/j.ccr.2018.10.003
Ettlinger, R., Lächelt, U., Gref, R., Horcajada, P., Lammers, T., Serre, C., Couvreur, P., Morris, R. E., & Wuttke, S. (2022). Toxicity of metal–organic framework nanoparticles: From essential analyses to potential applications. Chemical Society Reviews, 51(2), 464–484. https://doi.org/10.1039/D1CS00918D
Fasano, F., Dosso, J., Bezzu, C. G., Carta, M., Kerff, F., Demitri, N., Su, B.-L., & Bonifazi, D. (2021). BN-doped metal–organic frameworks: Tailoring 2D and 3D porous architectures through molecular editing of borazines. In Chemistry, 27(12), 4124–4133. https://doi.org/10.1002/chem.202004640
Federal register,ATSDR, substance priority list resource. (2019), 84(90), 1–13.
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The chemistry and applications of metal–organic frameworks. Science, 341(6149), Article 1230444. https://doi.org/10.1126/science.1230444
Ghosh, D., Devi, P., & Kumar, P. (2020). Modified p-GaN microwells with vertically aligned 2D-MoS2 for enhanced photoelectrochemical water splitting. ACS Applied Materials and Interfaces, 12(12), 13797–13804. https://doi.org/10.1021/acsami.9b20969
Guidelines for drinking-water quality. (2017) (4th ed.) Incorporating the First Addendum. World Health Organization. PubMed: 28759192
Guo, Q., Li, Y., Zheng, L.-W., Wei, X.-Y., Xu, Y., Shen, Y.-W., Zhang, K.-G., & Yuan, C.-G. (2023). Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability. Journal of Environmental Sciences (China), 128, 213–223. https://doi.org/10.1016/j.jes.2022.08.002
Gurusamy, L., Anandan, S., & Wu, J. J. (2021). Nanomaterials derived from metal–organic frameworks for energy storage supercapacitor application. In (pp. 441–470). Elsevier. https://doi.org/10.1016/B978-0-12-822099-3.00018-6
Hou, J., Sapnik, A. F., & Bennett, T. D. (2020). Metal–organic framework gels and monoliths. Chemical Science, 11(2), 310–323. https://doi.org/10.1039/c9sc04961d
Huang, Z., Zhao, M., Wang, C., Wang, S., Dai, L., & Zhang, L. (2020). Preparation of a novel Zn(II)-imidazole framework as an efficient and regenerative adsorbent for Pb, Hg, and As Ion Removal from Water. ACS Applied Materials and Interfaces, 12(37), 41294–41302. https://doi.org/10.1021/acsami.0c10298
Ikreedeegh, R. R., & Tahir, M. (2021). A critical review in recent developments of metal–organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels. Journal of CO2 Utilization, 43,101381,10.1016/j.jcou.2020.101381. https://doi.org/10.1016/j.jcou.2020.101381
Jian, J.X., Jokubavicius, V., Syväjärvi, M., Yakimova, R., & Sun, J. (2021). Nanoporous cubic silicon carbide photoanodes for enhanced solar water splitting. ACS Nano, 15(3), 5502–5512. https://doi.org/10.1021/acsnano.1c00256
Karimi, M., Mehrabadi, Z., Farsadrooh, M., Bafkary, R., Derikvandi, H., Hayati, P., & Mohammadi, K. (2021). Metal–organic framework. Interface Science and Technology 279–387.https://doi.org/10.1016/B978-0-12-818805-7.00010-2
Li, J.-R., Sculley, J., & Zhou, H.-C. (2012). Metal–organic frameworks for separations. Chemical Reviews, 112(2), 869–932. https://doi.org/10.1021/cr200190s
Li, X., Jiang, G., Jian, M., Zhao, C., Hou, J., Thornton, A. W., Zhang, X., Liu, J. Z., Freeman, B. D., Wang, H., Jiang, L., & Zhang, H. (2023). Construction of angstrom-scale ion channels with versatile pore configurations and sizes by metal–organic frameworks. Nature Communications, 14(1), 286. https://doi.org/10.1038/s41467-023-35970-x
Li, Y.-H., Liu, M.-Y., Wei, Y.-W., Wang, C.-C., & Wang, P. (2023). Adsorption and photocatalytic desorption toward Cr(vi) over defect-induced hierarchically porous UiO-66-(OH)2: A sustainable approach. Environmental Science: Nano, 10(2), 672–682. https://doi.org/10.1039/D2EN01035F
Lin, Y., Zhao, L., Wang, L., & Gong, Y. (2021). Ruthenium-doped NiFe-based metal–organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction. In Dalton Transactions, 50(12), 4280–4287. https://doi.org/10.1039/d0dt04133e
Liu, B., Kim, K.-H., Kumar, V., & Kim, S. (2020). A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. Journal of Hazardous Materials, 388, Article 121815. https://doi.org/10.1016/j.jhazmat.2019.121815
Liu, J., Wen, S., Hou, Y., Zuo, F., Beran, G. J. O., & Feng, P. (2013). Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angewandte Chemie, 52(11), 3241–3245. https://doi.org/10.1002/Anie.201209363
Liu, Y., & Tang, Z. (2013). Multifunctional Nanoparticle@MOF core–shell nanostructures. Advanced Materials, 25(40), 5819–5825. https://doi.org/10.1002/adma.201302781
Lu, Y., Zhang, Y., Yang, C.-Y., Revuelta, S., Qi, H., Huang, C., Jin, W., Li, Z., Vega-Mayoral, V., Liu, Y., Huang, X., Pohl, D., Položij, M., Zhou, S., Cánovas, E., Heine, T., Fabiano, S., Feng, X., & Dong, R. (2022). Precise tuning of interlayer electronic coupling in layered conductive metal–organic frameworks. Nature Communications, 13(1), 7240. https://doi.org/10.1038/s41467-022-34820-6
Lv, R., Li, H., Su, J., Fu, X., Yang, B., Gu, W., & Liu, X. (2017). Zinc metal−organic framework for selective detection and differentiation of Fe(III) and Cr(VI) ions in aqueous solution. In Inorganic Chemistry, 56(20), 12348–12356. https://doi.org/10.1021/acs.inorgchem.7b01822
Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S., & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. Journal of Hazardous Materials, 399, Article 123023. https://doi.org/10.1016/j.jhazmat.2020.123023
Mikolasek, M., Kemeny, M., Chymo, F., Ondrejka, P., & Huran, J. (2019). Amorphous silicon PEC-PV hybrid structure for photo-electrochemical water splitting. Journal of Electrical Engineering, 70(7), 107–111. https://doi.org/10.2478/jee-2019-0050
Pan, Y., Lin, R., Chen, Y., Liu, S., Zhu, W., Cao, X., Chen, W., Wu, K., Cheong, W.-C., Wang, Y., Zheng, L., Luo, J., Lin, Y., Liu, Y., Liu, C., Li, J., Lu, Q., Chen, X., Wang, D., . . . Li, Y. (2018). Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. Journal of the American Chemical Society. Am. Chem. Soc, 140(12), 4218–4221. https://doi.org/10.1021/jacs.8b00814
Podgorski, J., & Berg, M. (2020). Global threat of arsenic in groundwater. Science, 368(6493), 845–850. https://doi.org/10.1126/science.aba1510
Rafiee, Z. (2021). Fabrication of efficient Zn-MOF/COF catalyst for the Knoevenagel condensation reaction. Journal of the Iranian Chemical Society, 18(10), 2657–2664. https://doi.org/10.1007/s13738-021-02221-z
Rahman, N., & Haseen, U. (2015). Development of polyacrylamide chromium oxide as a new sorbent for solid phase extraction of As(III) from food and environmental water samples. RSC Advances, 5(10), 7311–7323. https://doi.org/10.1039/C4RA12845A
Ramanayaka, S., Vithanage, M., Sarmah, A., An, T., Kim, K.-H., & Ok, Y. S. (2019). Performance of metal–organic frameworks for the adsorptive removal of potentially toxic elements in a water system: A critical review. RSC Advances, 9(59), 34359–34376. https://doi.org/10.1039/c9ra06879a
Ramish, S. M., Ghorbani-Choghamarani, A., & Mohammadi, M. (2022). Microporous hierarchically Zn-MOF as an efficient catalyst for the Hantzsch synthesis of polyhydroquinolines. Scientific Reports, 12(1), 1479. https://doi.org/10.1038/s41598-022-05411-8
Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391–396. https://doi.org/10.1136/pmj.79.933.391
Ren, X., Wang, C.-C., Li, Y., Wang, C.-Y., Wang, P., & Gao, S. (2022). Ag(I) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: A 3Rs (reduce, recycle and reuse) approach and practice. Chemical Engineering Journal, 442, 442, 136306. https://doi.org/10.1016/j.cej.2022.136306
Ren, X., Wang, C.-C., Li, Y., Wang, P., & Gao, S. (2023). Defective SO3H-MIL-101(Cr) for capturing different cationic metal ions: Performances and mechanisms. Journal of Hazardous Materials, 445, Article 130552. https://doi.org/10.1016/j.jhazmat.2022.130552
Ye, R.-K., Sun, S.-S., He, L.-Q., Yang, S.-R., Liu, X.-Q., Li, M.-D., Fang, P.-P., & Hu, J.-Q. (2021). Surface engineering of hematite nanorods by 2D Ti3C2-MXene: Suppressing the electron-hole recombination for enhanced photoelectrochemical performance. Applied Catalysis B, 291. https://doi.org/10.1016/j.apcatb.2021.120107
Ronchi, R. M., Arantes, J. T., & Santos, S. F. (October 15, 2019). Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 45(15), 18167–18188. https://doi.org/10.1016/j.ceramint.2019.06.114
Saha, J. C., Dikshit, A. K., Bandyopadhyay, M., & Saha, K. C. (1999). A review of arsenic poisoning and its effects on human health. Critical Reviews in Environmental Science and Technology, 29(3), 281–313. https://doi.org/10.1080/10643389991259227
Samimi, M., Zakeri, M., Alobaid, F., & Aghel, B. (2022). A brief review of recent results in arsenic adsorption process from aquatic environments by metal–organic frameworks: Classification based on kinetics, isotherms and thermodynamics behaviors. Nanomaterials, 13(1), 60. https://doi.org/10.3390/nano13010060
Sharma, S., Let, S., Desai, A. V., Dutta, S., Karuppasamy, G., Shirolkar, M. M., Babarao, R., & Ghosh, S. K. (2021). Rapid, selective capture of toxic oxo-anions of Se(iv), Se(vi) and As(v) from water by an ionic metal–organic framework (iMOF). Journal of Materials Chemistry A, 9(10), 6499–6507. https://doi.org/10.1039/D0TA04898D
Song, C., Fan, F., Xuan, N., Huang, S., Zhang, G., Wang, C., Sun, Z., Wu, H., & Yan, H. (2018). Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain. ACS Applied Materials and Interfaces, 10(4), 3994–4000. https://doi.org/10.1021/acsami.7b17247
Sun, J., Zhang, X., Zhang, A., & Liao, C. (2019). Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. Journal of Environmental Sciences (China), 80, 197–207. https://doi.org/10.1016/j.jes.2018.12.013
Tong, G., Chen, T., Li, H., Qiu, L., Liu, Z., Dang, Y., Song, W., Ono, L. K., Jiang, Y., & Qi, Y. (2019). Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy, 65, Article 104015. https://doi.org/10.1016/j.nanoen.2019.104015
Wang, C., Liu, X., Chen, J. P., & Li, K. (2015). Superior removal of arsenic from water with zirconium metal–organic framework UiO-66. Scientific Reports, 5, Article 16613. https://doi.org/10.1038/srep16613
Wang, X., Chen, X.-Z., Alcântara, C. C. J., Sevim, S., Hoop, M., Terzopoulou, A., de Marco, C., Hu, C., de Mello, A. J., Falcaro, P., Furukawa, S., Nelson, B. J., Puigmartí-Luis, J., & Pané, S. (2019). MOFBOTS: Metal–organic-framework-based biomedical microrobots. Advanced Materials, 31(27), Article e1901592. https://doi.org/10.1002/adma.201901592
Wang, Z., Liu, L., Li, Z., Goyal, N., Du, T., He, J., & Li, G. K. (2022). Shaping of metal–organic frameworks: A review. Energy and Fuels, 36(6), 2927–2944. https://doi.org/10.1021/acs.energyfuels.1c03426
Wu, S.-C., Chang, P.-H., Lin, C.-Y., & Peng, C.-H. (2020). Multi-metals CaMgAl metal–organic framework as CaO-based sorbent to achieve highly CO2 capture capacity and cyclic performance. In Materials, 13(10), 2220. https://doi.org/10.3390/ma13102220
Xie, D., Ma, Y., Gu, Y., Zhou, H., Zhang, H., Wang, G., Zhang, Y., & Zhao, H. (2017). Bifunctional NH2-MIL-88(Fe) metal–organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. Journal of Materials Chemistry A, 5(45), 23794–23804. https://doi.org/10.1039/C7TA07934F
Xu, G.-R., An, Z.-H., Xu, K., Liu, Q., Das, R., & Zhao, H.-L. (2021). Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews, 427. https://doi.org/10.1016/j.ccr.2020.213554
Yang, X., Wang, Q., Zhu, K., Ye, K., Wang, G., Cao, D., & Yan, J. (2021). 3D Porous Oxidation-Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High-Performance Supercapacitors. Advanced Functional Materials, 31(20), Article 2101087. https://doi.org/10.1002/adfm.202101087
Zhang, R., Tao, C.-A., Chen, R., Wu, L., Zou, X., & Wang, J. (2018). Ultrafast synthesis of Ni-MOF in one minute by ball milling. Nanomaterials, 8(12), 1067. https://doi.org/10.3390/nano8121067
Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to metal–organic frameworks. Chemical Reviews, 112(2), 673–674. https://doi.org/10.1021/cr300014x
Zhu, F., Hu, J., Matulionis, I., Deutsch, T., Gaillard, N., Kunrath, A., Miller, E., & Madan, A. (2009). Amorphous silicon carbide photoelectrode for hydrogen production directly from water using sunlight. Philosophical Magazine, 89(28–30), 2723–2739. https://doi.org/10.1080/14786430902740729
Downloads
Published
License
Copyright (c) 2024 RSYN Chemical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.