Synthetic Methodologies and Biological Importance of Phosphonylpyrazoles
DOI:
https://doi.org/10.70130/RCS.2024.0101001Keywords:
pyrazole, Phosphonylpyrazoles, Bestmann–Ohira Reagent, PhosphonatesAbstract
Pyrazole derivatives are an important class of compounds with diverse applications in agrochemicals, coordination chemistry, supramolecular chemistry, and pharmaceuticals. This review focuses on the synthesis and applications of phosphonate-containing pyrazole derivatives. Phosphonates are known to mimic carboxylic acid groups and have been used in drug design to modulate biological activities. The review discusses the nomenclature and types of phosphonylpyrazoles based on the position of the phosphonyl group in the pyrazole ring. Synthetic methods for preparing phosphonylpyrazoles are categorized into three main routes: phosphorylation of the preformed pyrazole ring, ring closure of acyclic phosphorus-containing compounds, and cycloaddition-based strategies. Phosphorylation of the pyrazole ring can be achieved through C-phosphonylation and N-phosphonylation reactions, with palladium-catalyzed cross-coupling reactions being a useful strategy for introducing phosphorus substituents at various positions of the pyrazole ring. Ring closure of acyclic phosphorus-containing compounds can lead to the formation of N-phosphonylpyrazoles and C-phosphonylpyrazoles, with the use of Vilsmeier reagents and cycloaddition-based strategies being prominent approaches. The review also highlights the biological importance of phosphonylpyrazoles, with phosphorus substituents acting as biological activity modulators for antimicrobials and pesticides. The development of new methodologies for synthesizing phosphonylpyrazoles is crucial for both the chemical and pharmaceutical industries, and the review concludes by emphasizing the need for more general and efficient methods
References
Ahamad, S., Gupta, A. K., Kant, R., & Mohanan, K. (2015). Domino reaction involving the Bestmann-Ohira reagent and alpha,beta-unsaturated aldehydes: Efficient synthesis of functionalized pyrazoles. Organic and Biomolecular Chemistry, 13(5), 1492–1499. https://doi.org/DOI: 10.1039/c4ob02365j
Ali, T. E., & Abdel-Kariem, S. M. (2012). Synthetic Methods for Phosphorus Compounds Containing Pyrazole Rings. Heterocycles, 85(9), 2073–2109. https://doi.org/10.3987/REV-12-739
Aoyama, T., Nakano, T., Marumo, K., Uno, Y., & Shioiri, T. (1991). Reaction of lithium trimethylsilyldiazomethanide with ketenimines bearing electron-withdrawing groups. Synthesis, 1991(12), 1163–1167. https://doi.org/10.1055/s-1991-28411
Bartnik, R., & Cal, D. (2010). A New Route to 3-Phosphonylpyrazoles. Phosphorus, Sulfur, and Silicon and the Related Elements, 185(9), 1858–1861. https://doi.org/10.1080/10426500903329278
Chandrasekharan, S. P., Dhami, A., Kumar, S., & Mohanan, K. (2022). Recent advances in pyrazole synthesis employing diazo compounds and synthetic analogues. Organic & Biomolecular Chemistry, 20(45), 8787–8817. https://doi.org/10.1039/D2OB01918C
Chen, H., Qian, D.-Q., Xu, G.-X., Liu, Y.-X., Chen, X.-D., Shi, X.-D., Cao, R.-Z., & Liu, L.-Z. (1999). New Strategy for the Synthesis of Phosphonyl Pyrazoles. Synthetic Communications, 29(22), 4025–4033. https://doi.org/10.1080/00397919908085923
Dirat, O., Clipson, A., Elliott, J. M., Garrett, S., Brian Jones, A., Reader, M., & Shaw, D. (2006). Regioselective synthesis of 4-(2-alkyl-5-methyl-2H-pyrazol-3-yl)-piperidines. Tetrahedron Letters, 47(11), 1729–1731. https://doi.org/10.1016/j.tetlet.2006.01.044
Favre, H. A., & Powell, W. H. (2013). Nomenclature of Organic Chemistry. Royal Society of Chemistry. https://doi.org/10.1039/9781849733069
Felcht, U., & Regitz, M. (1976). Phosphorylation with 1-Phosphorylpyrazoles. Angewandte Chemie International Edition in English, 15(6), 378–379. https://doi.org/10.1002/anie.197603781
Flores, A., Brondani, S., Pizzuti, L., Martins, M., Zanatta, N., Bonacorso, H., & Flores, D. (2005). Haloacetylated Enol Ethers, 19: Synthesis of 3-(2-Thienyl)- and 3-(2-Furyl)-5-trihalomethyl Substituted Azoles. Synthesis, 2005(16), 2744–2750. https://doi.org/10.1055/s-2005-872140
Giornal, F., Pazenok, S., Rodefeld, L., Lui, N., Vors, J.-P., & Leroux, F. R. (2013). Synthesis of diversely fluorinated pyrazoles as novel active agrochemical ingredients. Journal of Fluorine Chemistry, 152, 2–11. https://doi.org/10.1016/j.jfluchem.2012.11.008
Gryaznov, Kurochkina, Musin, Pudovik, & Kibardin. (1996). Reaction of Phosphorus Acid Chlorides with Symmetric and Unsymmetric Azines. Russian Journal of General Chemistry, 66(3), 372–374.
Halcrow, M. A. (2009). Pyrazoles and pyrazolides—flexible synthons in self-assembly. Dalton Transactions, 12, 2059. https://doi.org/10.1039/b815577a
Hartmann, A., Welter, W., & Regitz, M. (1974). Intramolekulare reaktionen von vinyl- und allyl-phosphoryl-carbenen (1). Tetrahedron Letters, 15(20), 1825–1828. https://doi.org/10.1016/S0040-4039(01)93144-2
Khan, M. F., Alam, M. M., Verma, G., Akhtar, W., Akhter, M., & Shaquiquzzaman, M. (2016). The therapeutic voyage of pyrazole and its analogs: A review. European Journal of Medicinal Chemistry, 120, 170–201. https://doi.org/10.1016/j.ejmech.2016.04.077
Kommera, R., Balasubramanian, S., & Raju Bhimapaka, C. (2020). RuCl 3 Catalyzed Reaction of Chromones with Bestmann‐Ohira Reagent for the Construction of 2‐Hydroxybenzoyl‐1 H ‐pyrazolylphosphonates and Dihydrochromeno[3,2‐ c ]pyrazolylphosphonates. Asian Journal of Organic Chemistry, 9(11), 1852–1856. https://doi.org/10.1002/ajoc.202000420
Kouno, R., Okauchi, T., Nakamura, M., Ichikawa, J., Minami, T., Nakamura, H., Ichikawa, J., Minami, T., Nakamura, M., Ichikawa, J., Minami, T., Nakamura, H., Ichikawa, J., & Minami, T. (1998). Synthesis and Synthetic Utilization of alpha-Functionalized Vinylphosphonates Bearing beta-Oxy or beta-Thio Substituents. Journal of Organic Chemistry, 63(18), 6239–6246. https://doi.org/DOI: 10.1021/jo980467g
Lamberth, C. (2007). Pyrazole Chemistry in Crop Protection. HETEROCYCLES, 71(7), 1467. https://doi.org/10.3987/REV-07-613
Leigh, G. J. (2011). Principles of Chemical Nomenclature: A Guide to IUPAC Recommendations, 2011 Edition (International Union of Pure and Applied Chemistry). Royal Society of Chemistry. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1849730075
Lu, R., & Yang, H. (1997). A novel approach to phosphonyl-substituted heterocyclic system(I). Tetrahedron Letters, 38(29), 5201–5204. https://doi.org/DOI: 10.1016/S0040-4039(97)01111-8
Martin, A. R., Mohanan, K., Toupet, L., Vasseur, J. J., & Smietana, M. (2011). Regioselective synthesis of 3-carbo-5-phosphonylpyrazoles through a one-pot Claisen-Schmidt/1,3-dipolar cycloaddition/oxidation sequence. European Journal of Organic Chemistry, 17, 3184–3190. https://doi.org/10.1002/ejoc.201100167
Mayorquín-Torres, M. C., Simoens, A., Bonneure, E., & Stevens, C. V. (2024). Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004–2024. Chemical Reviews, 124(12), 7907–7975. https://doi.org/10.1021/acs.chemrev.4c00090
Mohanan, K., Martin, A. R., Toupet, L., Smietana, M., & Vasseur, J. J. (2010). Three-component reaction using the Bestmann-Ohira reagent: A regioselective synthesis of phosphonyl pyrazole rings. Angewandte Chemie - International Edition, 49(18), 3196–3199. https://doi.org/10.1002/anie.200906781
Molteni, G. (2007). Silver(I) salts as useful reagents in pyrazole synthesis. Arkivoc, 2007(2), 224. https://doi.org/10.3998/ark.5550190.0008.207
Muruganantham, Mobin, S. M., & Namboothiri, I. N. N. (2007). Base-mediated reaction of the Bestmann-Ohira reagent with nitroalkenes for the regioselective synthesis of phosphonylpyrazoles. Organic Letters, 9(6), 1125–1128. https://doi.org/DOI: 10.1021/ol070107s
Muruganantham, R., & Namboothiri, I. (2010). Phosphonylpyrazoles from bestmann-ohira reagent and nitroalkenes: synthesis and dynamic nmr studies. Journal of Organic Chemistry, 75(7), 2197–2205. https://doi.org/DOI: 10.1021/jo902595e
Raghu, K. V., Reddy, C. D., & Rao, K. S. (1997). Facile synthesis of new organophosphorus compounds with -N-P(O)-N- linkage: Reaction between 2-pyrazoline and phosphorodichloridates/phosphonic dichloride. Heteroatom Chemistry, 8(1), 55–58. https://doi.org/10.1002/(SICI)1098-1071(1997)8:1<55::AID-HC8>3.0.CO;2-1
Shen, Y., Zheng, J., Xin, Y., Lin, Y., & Qi, M. (1995). Synthesis of perfluoroalkylated heterocyclic phosphonates. Journal of the Chemical Society, Perkin Transactions 1, 8, 997. https://doi.org/10.1039/p19950000997
Shioiri, T., Aoyama, T., & Katsuta, S. (1989). New Method and Reagents in Organic Synthesis. 81. Lithium Trimethylsilyldiazomethane: A Useful Reagent for the Preparation of 1,2,3-Triazoles from Ketenimines. HETEROCYCLES, 28(1), 133. https://doi.org/10.3987/COM-88-S55
Si, W.-J., Wang, X.-B., Chen, M., Wang, M.-Q., Lu, A.-M., & Yang, C.-L. (2019). Design, synthesis, antifungal activity and 3D-QSAR study of novel pyrazole carboxamide and niacinamide derivatives containing benzimidazole moiety. New Journal of Chemistry. https://doi.org/10.1039/C8NJ05150J
Singh, R., Kaur, R., Ahlawat, P., Kaushik, P., & Singh, K. (2021). Green Methods for the Synthesis of Pyrazoles: A Review. Organic Preparations and Procedures International, 53(4), 317–351. https://doi.org/10.1080/00304948.2021.1904750
Singh, U. P., Kashyap, S., Singh, H. J., & Butcher, R. J. (2011). Anion directed supramolecular architecture of pyrazole based ionic salts. CrystEngComm, 13(12), 4110. https://doi.org/10.1039/c0ce00820f
Tanwar, N., Rana, D., Kaur, R., Singh, R., Singh, K., Tanwer, N., Kaur, R., Rana, D., Singh, R., & Singh, K. (2015). Synthesis and characterization of Pyrazoline derivatives. Journal of Integrated Science and Technology, 3(2), 39–41. http://pubs.iscience.in/journal/index.php/jist/article/view/313
Tran, G., Gomez Pardo, D., Tsuchiya, T., Hillebrand, S., Vors, J.-P., & Cossy, J. (2013). Palladium-Catalyzed Phosphonylation: Synthesis of C3-, C4-, and C5-Phosphonylated Pyrazoles. Organic Letters, 15(21), 5550–5553. https://doi.org/10.1021/ol402717b
Werner, D., Bayer, U., Rad, N. E., Junk, P. C., Deacon, G. B., & Anwander, R. (2018). Unique and contrasting structures of homoleptic lanthanum( iii ) and cerium( iii ) 3,5-dimethylpyrazolates. Dalton Transactions, 47(17), 5952–5955. https://doi.org/10.1039/C8DT00338F
Wyatt, P. G., Woodhead, A. J., Berdini, V., Boulstridge, J. A., Carr, M. G., Cross, D. M., Davis, D. J., Devine, L. A., Early, T. R., Feltell, R. E., Lewis, E. J., McMenamin, R. L., Navarro, E. F., O’Brien, M. A., O’Reilly, M., Reule, M., Saxty, G., Seavers, L. C. A., Smith, D.-M., … Woolford, A. J.-A. (2008). Identification of N -(4-Piperidinyl)-4-(2,6-dichlorobenzoylamino)-1 H -pyrazole-3-carboxamide (AT7519), a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design †. Journal of Medicinal Chemistry, 51(16), 4986–4999. https://doi.org/10.1021/jm800382h
Zampieri, D., Mamolo, M. G., Laurini, E., Scialino, G., Banfi, E., & Vio, L. (2008). Antifungal and antimycobacterial activity of 1-(3,5-diaryl-4,5-dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives. Bioorganic & Medicinal Chemistry, 16(8), 4516–4522. https://doi.org/10.1016/j.bmc.2008.02.055
Zheng, B., Chen, H., Zhu, L., Hou, X., Wang, Y., Lan, Y., & Peng, Y. (2019). Formal Asymmetric Cycloaddition of Activated α,β-Unsaturated Ketones with α-Diazomethylphosphonate Mediated by a Chiral Silver SPINOL Phosphate Catalyst. Organic Letters, 21(3), 593–597. https://doi.org/10.1021/acs.orglett.8b03436
Downloads
Published
License
Copyright (c) 2024 RSYN Chemical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.