Impact of Bioplastics Towards Sustainable Environment
DOI:
https://doi.org/10.70130/RCS.2024.0101002Keywords:
Bioplastics, Sustainable Environment, Green ChemistryAbstract
Bioplastics are a promising alternative to fossil-based plastics. This article reviews the challenges posed by traditional plastics, explores the potential of bioplastics as a sustainable alternative, and delves into the advancements in bio-plastic production and characterization, highlighting their applications in various sectors, including packaging, biomedicine, and bio-photonics. This article provides an overview of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) Bioplastic and their composites, focusing on their structural, thermal, and mechanical properties.
References
Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and disadvantages of Bioplastics production from starch and lignocellulosic components. Polymers, 13(15), 2484. https://doi.org/10.3390/polym13152484
Aldas, M., Ferri, J. M., Lopez-Martinez, J., Samper, M. D., & Arrieta, M. P. (2020). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. https://doi.org/10.1002/app.48236
Ali, S. S., Abdelkarim, E. A., Elsamahy, T., Al-Tohamy, R., Li, F., Kornaros, M., Zuorro, A., Zhu, D., & Sun, J. (2023). Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environmental Science and Ecotechnology, 15, 100254. https://doi.org/10.1016/j.ese.2023.100254
Alias, N. H., Abdullah, N., Othman, N. H., Marpani, F., Zainol, M. M., & Shayuti, M. S. M. (2022). Sustainability challenges and future perspectives of biopolymer. In Biopolymers (pp. 373–389). Springer. https://doi.org/10.1007/978-3-030-98392-5_17
Altalhi, T. (2022). Handbook of Bioplastics and biocomposites engineering applications. John Wiley & Sons. https://doi.org/10.1002/9781119160182
Andrew, J. J., & Dhakal, H. N. (2022). Sustainable biobased composites for advanced applications: Recent trends and future opportunities–A critical review. Composites Part C, 7, 100220. https://doi.org/10.1016/j.jcomc.2021.100220
Ashter, S. A. (2016). Introduction to Bioplastics engineering. William Andrew Publishing. https://doi.org/10.1016/C2014-0-04010-5
Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918. https://doi.org/10.1016/j.heliyon.2021.e07918
Attallah, O. A., Mojicevic, M., Garcia, E. L., Azeem, M., Chen, Y., Asmawi, S., & Brenan Fournet, M. (2021). Macro and micro routes to high performance Bioplastics: Bioplastic biodegradability and mechanical and barrier properties. Polymers, 13(13), 2155. https://doi.org/10.3390/polym13132155
Aworinde, A. K., Emagbetere, E., Adeosun, S. O., & Akinlabi, E. T. (2021). Polylactide and its composites on various scales of hardness. Pertanika Journal of Science and Technology, 29(2). https://doi.org/10.47836/pjst.29.2/34
Barzic, A. I. An introduction to engineering applications of Bioplastics. Handbook of Bioplastics and biocomposites engineering applications. (2023): p. 1–22. https://doi.org/10.1002/9781119160182.ch1
Behera, S., Priyadarshanee, M., Vandana, S., & Das, S. (2022). Polyhydroxyalkanoates, the Bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. Chemosphere, 294, 133723. https://doi.org/10.1016/j.chemosphere.2022.133723
Bhaskar, R., Zo, S. M., Narayanan, K. B., Purohit, S. D., Gupta, M. K., & Han, S. S. (2023). Recent development of protein-based biopolymers in food packaging applications: A review. Polymer Testing, 124, 108097. https://doi.org/10.1016/j.polymertesting.2023.108097
Bhatia, S. K., Otari, S. V., Jeon, J.-M., Gurav, R., Choi, Y.-K., Bhatia, R. K., Pugazhendhi, A., Kumar, V., Rajesh Banu, J., Yoon, J.-J., Choi, K.-Y., & Yang, Y.-H. (2021). Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresource Technology, 326, 124733. https://doi.org/10.1016/j.biortech.2021.124733
Bîrcă, A. et al. (2019). Introduction in thermoplastic and thermosetting polymers. In Materials for biomedical engineering (pp. 1–28). Elsevier.
Bishop, G., Styles, D., & Lens, P. N. L. (2021). Environmental performance comparison of Bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resources, Conservation and Recycling, 168, 105451. https://doi.org/10.1016/j.resconrec.2021.105451
Boey, J. Y., Kong, U., Lee, C. K., Lim, G. K., Oo, C. W., Tan, C. K., Ng, C. Y., Azniwati, A. A., & Tay, G. S. (2024). The effect of filler loading, biological treatment, and bioplastic blend ratio on flexural and impact properties of blended bioplastic reinforced with spent coffee ground. Polymer Engineering and Science, 64(7), 3319–3333. https://doi.org/10.1002/pen.26772
Briassoulis, D., Tserotas, P., & Athanasoulia, I.-G. (2021). Alternative optimization routes for improving the performance of poly (3-hydroxybutyrate)(PHB) based plastics. Journal of Cleaner Production, 318, 128555. https://doi.org/10.1016/j.jclepro.2021.128555
Carter, P. (2022). Bio-advantaged polyamides from muconic acid. Iowa State University. https://dr.lib.iastate.edu/handle/20.500.12876/Nr1VXWnz
Chang, B. P., Mohanty, A. K., & Misra, M. (2020). Studies on durability of sustainable biobased composites: A review. RSC Advances, 10(31), 17955–17999. https://doi.org/10.1039/c9ra09554c
Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019). Application of protein-based films and coatings for food packaging: A review. Polymers, 11(12), 2039. https://doi.org/10.3390/polym11122039
Choi, J.-H., Kim, J.-H., Lee, S. Y., Jang, S.-K., Kwak, H. W., Kim, H., & Choi, I.-G. (2022). Thermoplasticity reinforcement of ethanol organosolv lignin to improve compatibility in PLA-based ligno-Bioplastics: Focusing on the structural characteristics of lignin. International Journal of Biological Macromolecules, 209(B), 1638–1647. https://doi.org/10.1016/j.ijbiomac.2022.04.090
Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Systems and Environment, 5(2), 231–251. https://doi.org/10.1007/s41748-021-00208-7
Costa, A., Encarnação, T., Tavares, R., Todo Bom, T., & Mateus, A. (2023). Bioplastics: Innovation for green transition. Polymers, 15(3), 517. https://doi.org/10.3390/polym15030517
Cubas, A. L. V., Moecke, E. H. S., Provin, A. P., Dutra, A. R. A., Machado, M. M., & Gouveia, I. C. (2023). The impacts of plastic waste from personal protective equipment used during the Covid-19 pandemic. Polymers, 15(15), 3151. https://doi.org/10.3390/polym15153151
de Souza, F. M., & Gupta, R. K. (2024). Bacteria for Bioplastics: Progress, applications, and challenges. ACS Omega, 9(8), 8666–8686. https://doi.org/10.1021/acsomega.3c07372
Dilshad, E., Waheed, H., Ali, U., Amin, A., & Ahmed, I. (2021). General structure and classification of Bioplastics and biodegradable plastics. In M. Kuddus & Roohi (Eds.), Bioplastics for sustainable development. Springer. https://doi.org/10.1007/978-981-16-1823-9_2
Dourado Fernandes, C. D., Francisco Oechsler, B., Sayer, C., de Oliveira, D., & Hermes de Araújo, P. H. (2022). Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. European Polymer Journal, 169, 111132. https://doi.org/10.1016/j.eurpolymj.2022.111132
Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271. https://doi.org/10.1016/j.rineng.2023.101271
Folino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of wasted Bioplastics in natural and industrial environments: A review. Sustainability, 12(15), 6030. https://doi.org/10.3390/su12156030
Friedrich, D. (2021). Benefits from sustainable development using Bioplastics: A comparison between the food and fashion industries. Sustainable Development, 29(5), 915–929. https://doi.org/10.1002/sd.2184
Gao, Y., Zhou, D., Lyu, J., A, S., Xu, Q., Newland, B., Matyjaszewski, K., Tai, H., & Wang, W. (2020). Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nature Reviews. Chemistry, 4(4), 194–212. https://doi.org/10.1038/s41570-020-0170-7
Garcia-Garcia, D., Quiles-Carrillo, L., Balart, R., Torres-Giner, S., & Arrieta, M. P. (2022). Innovative solutions and challenges to increase the use of poly(3-hydroxybutyrate) in food packaging and disposables. European Polymer Journal, 178, 111505. https://doi.org/10.1016/j.eurpolymj.2022.111505
George, D. M., Vincent, A. S., & Mackey, H. R. (2020). An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. Biotechnology Reports, 28, e00563. https://doi.org/10.1016/j.btre.2020.e00563
Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A., Khaneghah, A. M., & Jafari, S. M. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends in Food Science and Technology, 120, 154–173. https://doi.org/10.1016/j.tifs.2022.01.013
Hassan, M., Bai, J., & Dou, D.-Q. (2019). Biopolymers: Definition, classification and applications. Egyptian Journal of Chemistry, 62(9), 1725–1737. https://doi.org/10.21608/ejchem.2019.6967.1580
Ibrahim, N. I., Shahar, F. S., Sultan, M. T. H., Shah, A. U. M., Safri, S. N. A., & Mat Yazik, M. H. (2021). Overview of bioplastic introduction and its applications in product packaging. Coatings, 11(11), 1423. https://doi.org/10.3390/coatings11111423
Iles, A., & Martin, A. N. (2013). Expanding Bioplastics production: Sustainable business innovation in the chemical industry. Journal of Cleaner Production, 45, 38–49. https://doi.org/10.1016/j.jclepro.2012.05.008
Aida, M.S., Alonizan, N.H., Hussein, M.A. et al. Facile Synthesis and Antibacterial Activity of Bioplastic Membrane Containing In Doped ZnO/Cellulose Acetate Nanocomposite. J Inorg Organomet Polym 32, 1223–1233 (2022). https://doi.org/10.1007/s10904-021-02171-2
Koller, M. The handbook of polyhydroxyalkanoates, three volume set. 2020. CRC Press. https://doi.org/10.1201/978100308071
Lamberti, F. M., Román-Ramírez, L. A., & Wood, J. (2020). Recycling of Bioplastics: Routes and benefits. Journal of Polymers and the Environment, 28(10), 2551–2571. https://doi.org/10.1007/s10924-020-01795-8
Lods, L., Richmond, T., Dandurand, J., Dantras, E., Lacabanne, C., Durand, J.-M., Sherwood, E., Hochstetter, G., & Ponteins, P. (2022). Continuous bamboo fibers/fire-retardant polyamide 11: Dynamic mechanical behavior of the biobased composite. Polymers, 14(2), 299. https://doi.org/10.3390/polym14020299
Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) Bioplastics and their composites. Green Chemistry, 22(17), 5519–5558. https://doi.org/10.1039/D0GC01647K
Merchan, A. L., Fischöder, T., Hee, J., Lehnertz, M. S., Osterthun, O., Pielsticker, S., Schleier, J., Tiso, T., Blank, L. M., Klankermayer, J., Kneer, R., Quicker, P., Walther, G., & Palkovits, R. (2022). Chemical recycling of Bioplastics: Technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chemistry, 24(24), 9428–9449. https://doi.org/10.1039/D2GC02244C
Nadda, A. K., Sharma, S., & Bhat, R. Biopolymers: Recent updates, Challenges and Opportunities. (2022): Springer. https://doi.org/10.1007/978-3-030-98392-5
Nanda, S., Patra, B. R., Patel, R., Bakos, J., & Dalai, A. K. (2022). Innovations in applications and prospects of Bioplastics and biopolymers: A review. Environmental Chemistry Letters, 20(1), 379–395. https://doi.org/10.1007/s10311-021-01334-4
Nandiyanto, A. B. D., Fiandini, M., Ragadhita, R., Sukmafitri, A., Salam, H., & Triawan, F. (2020). Mechanical and biodegradation properties of cornstarch-based bioplastic material. Materials Physics and Mechanics, 44(3), 380–391. http://doi.org/10.18720/MPM.4432020_9
Ojha, N., & Das, N. (2021). Microbial production of Bioplastics: Current trends and future perspectives. In M. Kuddus & Roohi (Eds.), Bioplastics for sustainable development. Springer. https://doi.org/10.1007/978-981-16-1823-9_1
Oliver-Ortega, H., Julian, F., Espinach, F. X., Tarrés, Q., Delgado-Aguilar, M., & Mutjé, P. (2021). Biobased polyamide reinforced with natural fiber composites. In Fiber Reinforced Composites, (141–165). https://doi.org/10.1016/B978-0-12-821090-1.00008-9
Palacios, L. M., Muñoz, G. A. A., Castillo, H. S. V., & Guarín, H. P. (2023). Bioplastics challenges and opportunities. In Biodegradable polymers (pp. 229–242). CRC Press. https://doi.org/10.1201/9781003230533-16
Pradhan, S., Dikshit, P. K., & Moholkar, V. S. (2020). Production, characterization, and applications of biodegradable polymer: Polyhydroxyalkanoates. In Advances in sustainable polymers (pp. 51–94). Springer. https://doi.org/10.1007/978-981-15-1251-3_4
Quero, A. J.. Bioproduction of itaconic acid by biomass valorization, towards material elaboration. Biotechnology. Université de Strasbourg. (2016). English. NNT: 2016STRAE036. tel 01561750. https://theses.hal.science/tel-01561750v1.
Rajeshkumar, L., Ramesh, M., Bhuvaneswari, V., Balaji, D., & Deepa, C. (2023). Synthesis and thermomechanical properties of Bioplastics and biocomposites: A systematic review. Journal of Materials Chemistry. B, 11(15), 3307–3337. https://doi.org/10.1039/d2tb02221d
Ramchuran, S. O., O’Brien, F., Dube, N., & Ramdas, V. (2023). An overview of green processes and technologies, biobased chemicals and products for industrial applications. Current Opinion in Green and Sustainable Chemistry, 41, 100832. https://doi.org/10.1016/j.cogsc.2023.100832
Reddy, R. L., Reddy, V. S., & Gupta, G. A. (2013). Study of bio-plastics as green and sustainable alternative to plastics. International Journal of Emerging Technology and Advanced Engineering, 3(5), 76–81.
Rosenboom, J.-G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews. Materials, 7(2), 117–137. https://doi.org/10.1038/s41578-021-00407-8
Sheldon, R. A., & Norton, M. (2020). Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chemistry, 22(19), 6310–6322. https://doi.org/10.1039/D0GC02630A
Siddiqui, S. A., Yang, X., Deshmukh, R. K., Gaikwad, K. K., Bahmid, N. A., & Castro-Muñoz, R. (2024). Recent advances in reinforced Bioplastics for food packaging – A critical review. International Journal of Biological Macromolecules, 263(2), 130399. https://doi.org/10.1016/j.ijbiomac.2024.130399
Sikorska, W., Musioł, M., Zawidlak-Węgrzyńska, B., & Rydz, J. (2021). End‐of‐life Options for (Bio) degradable Polymers in the Circular Economy. Advances in Polymer Technology, 2021(1), 1–18. https://doi.org/10.1155/2021/6695140
Siracusa, V., & Blanco, I. (2020). Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-poly(ethylene terephthalate)(Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 12(8), 1641. https://doi.org/10.3390/polym12081641
Stoica, M., Stoica, D., Ivan, A. S., & Dragomir, C. M. B. (2022). Biopolymers: Regulatory and legislative issues. In Biopolymers (pp. 55–71). Springer. https://doi.org/10.1007/978-3-030-98392-5_4
Tan, S. X., Andriyana, A., Ong, H. C., Lim, S., Pang, Y. L., & Ngoh, G. C. (2022). A comprehensive review on the emerging roles of nanofillers and plasticizers towards sustainable starch-based bioplastic fabrication. Polymers, 14(4), 664. https://doi.org/10.3390/polym14040664
Tedeschi, G., Guzman-Puyol, S., Ceseracciu, L., Paul, U. C., Picone, P., Di Carlo, M., Athanassiou, A., & Heredia-Guerrero, J. A. (2020). Multifunctional Bioplastics inspired by wood composition: Effect of hydrolyzed lignin addition to xylan–cellulose matrices. Biomacromolecules, 21(2), 910–920. https://doi.org/10.1021/acs.biomac.9b01569
Vlasopoulos, A., Malinauskaite, J., Żabnieńska-Góra, A., & Jouhara, H. (2023). Life cycle assessment of plastic waste and energy recovery. Energy, 277, 127576. https://doi.org/10.1016/j.energy.2023.127576
Wellenreuther, C., Wolf, A., & Zander, N. (2022). Cost competitiveness of sustainable bioplastic feedstocks–A Monte Carlo analysis for polylactic acid. Cleaner Engineering and Technology, 6, 100411. https://doi.org/10.1016/j.clet.2022.100411
Zhao, X., Boruah, B., Chin, K. F., Đokić, M., Modak, J. M., & Soo, H. S. (2022). Upcycling to sustainably reuse plastics. Advanced Materials, 34(25), e2100843. https://doi.org/10.1002/adma.202100843
Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z.-M., Dong, T., Anderson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., & Zhu, H. (2023). Sustainable Bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97–127. https://doi.org/10.1016/j.matt.2022.11.006
Zhou, H., Guan, Y., Yan, X., Pan, Z., Xu, J., Dai, L., Zhang, M., & Si, C. (2023). All-lignocellulose-based hard bioplastic. Industrial Crops and Products, 193, 116164. https://doi.org/10.1016/j.indcrop.2022.116164
Downloads
Published
Issue
Section
License
Copyright (c) 2024 RSYN Chemical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.