Biomarkers in Air Pollution Exposure Health Risk Assessment

Authors

  • Rajnish Gupta ICMR–National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur, India Author
  • Suresh Yadav ICMR–National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur, India Author https://orcid.org/0000-0001-8996-8998

DOI:

https://doi.org/10.70130/CAST.2024.7105

Keywords:

air pollution, biomarker, biomonitoring, exposure assessment, respiratory health

Abstract

Air pollution, a global environmental issue, is comprised of complex mixtures of gases and particulate matter which pose substantial health risks including respiratory diseases and cancer. Biomarkers are measurable indicators of biological processes and are essential for understanding the health impact of air pollution. This study reviews key biomarkers associated with air pollution exposure and their implications for health risk assessment. Inflammatory biomarkers, oxidative stress markers, lung function parameters, and biomarkers of DNA damage emerged as crucial indicators of air pollution-induced health effects. The assessment of air pollution-related biomarkers may be performed using biomonitoring, exposure assessment, oxidative stress assays, genetic and epigenetic analysis, and omics technologies. Challenges and limitations in utilizing biomarkers for assessing health risks linked to air pollution exposure include response variability, specificity, multiple exposure sources, and ethical issues that hinder biomarker research and analysis. Future progress in biomarker detection technologies could involve the integration of multiomics methods, personalized exposure assessment techniques, wearable biosensors, detection of emerging pollutants, and a combination of biomarkers and artificial intelligence tools. Implementing biomarkers in regulatory decisions and public health policies can help mitigate air pollution’s adverse health effects and improve air quality standards.

References

Ahmad, A., Imran, M., & Ahsan, H. (2023). Biomarkers as biomedical bioindicators: Approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics, 15(6), 1630. https://doi.org/10.3390/pharmaceutics15061630

Almutairi, A. M., Akkam, Y., Alajmi, M. F., & Akkam, N. (2020). Effect of air pollution on glutathione S-transferase activity and total antioxidant capacity: Cross sectional study in Kuwait. Journal of Health and Pollution, 10(27), 200906. https://doi.org/10.5696/2156-9614-10.27.200906

Arias-Pérez, R. D., Taborda, N. A., Gómez, D. M., Narvaez, J. F., Porras, J., & Hernandez, J. C. (2020). Inflammatory effects of particulate matter air pollution. Environmental Science and Pollution Research International, 27(34), 42390–42404. https://doi.org/10.1007/s11356-020-10574-w

Autrup, H., Daneshvar, B., Dragsted, L. O., Gamborg, M., Hansen, M., Loft, S., Okkels, H., Nielsen, F., Nielsen, P. S., Raffn, E., Wallin, H., & Knudsen, L. E. (1999). Biomarkers for exposure to ambient air pollution—Comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. Environmental Health Perspectives, 107(3), 233–238. https://doi.org/10.1289/ehp.99107233

Bertazzi, P. A., Cantone, L., Pignatelli, P., Angelici, L., Bollati, V., Bonzini, M., Carugno, M., Mannucci, P. M., & Violi, F. (2014). Does enhancement of oxidative stress markers mediate health effects of ambient air particles?. Antioxidants and Redox Signaling, 21(1), 46–51. https://doi.org/10.1089/ars.2013.5694

Brucker, N., do Nascimento, S. N., Bernardini, L., Charão, M. F., & Garcia, S. C. (2020). Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic‐related air pollution: A review. Journal of Applied Toxicology, 40(6), 722–736. https://doi.org/10.1002/jat.3940

Casella, C., Kiles, F., Urquhart, C., Michaud, D. S., Kirwa, K., & Corlin, L. (2023). Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution in the context of cardiorespiratory health: A systematic review, pathway analysis, and network analysis. Toxics, 11(12), 1014. https://doi.org/10.3390/toxics11121014

Chuang, H. C., Ho, S. C., Lee, K. Y., & Chuang, K. J. (2015). Particulate air pollution and chronic obstructive pulmonary disease: The role of protein oxidation. Austin J Public Health and Epidemiol., 2(3), 1024–1025.

Dauchet, L., Hulo, S., Cherot-Kornobis, N., Matran, R., Amouyel, P., Edmé, J. L., & Giovannelli, J. (2018, December 1). Short-term exposure to air pollution: Associations with lung function and inflammatory markers in non-smoking, healthy adults. Environment International, 121(1), 610–619. https://doi.org/10.1016/j.envint.2018.09.036

Demetriou, C., & Vineis, P. (2020). Biomarkers and omics of health effects associated with traffic-related air pollution. In Traffic-related air pollution (pp. 281–309). Elsevier.

Elbarbary, M., Oganesyan, A., Honda, T., Kelly, P., Zhang, Y., Guo, Y., Morgan, G., Guo, Y., & Negin, J. (2020). Ambient air pollution, lung function and COPD: Cross-sectional analysis from the WHO Study of AGEing and adult health wave 1. BMJ Open Respiratory Research, 7(1), e000684. https://doi.org/10.1136/bmjresp-2020-000684

Farhat, Z., Browne, R. W., Bonner, M. R., Tian, L., Deng, F., Swanson, M., & Mu, L. (2018). How do glutathione antioxidant enzymes and total antioxidant status respond to air pollution exposure? Environment International, 112, 287–293. https://doi.org/10.1016/j.envint.2017.12.033

Flamant-Hulin, M., Caillaud, D., Sacco, P., Penard-Morand, C., & Annesi-Maesano, I. (2010). Air pollution and increased levels of fractional exhaled nitric oxide in children with no history of airway damage. Journal of Toxicology and Environmental Health. Part A, 73(4), 272–283. https://doi.org/10.1080/15287390903249206

Frye, C., Hoelscher, B., Cyrys, J., Wjst, M., Wichmann, H. E., & Heinrich, J. (2003). Association of lung function with declining ambient air pollution. Environmental Health Perspectives, 111(3), 383–387. https://doi.org/10.1289/ehp.5355

He, L., Cui, X., Li, Z., Teng, Y., Barkjohn, K. K., Norris, C., Fang, L., Lin, L., Wang, Q., Zhou, X., Hong, J., Li, F., Zhang, Y., Schauer, J. J., Black, M., Bergin, M. H., & Zhang, J. J. (2020). Malondialdehyde in nasal fluid: A biomarker for monitoring asthma control in relation to air pollution exposure. Environmental Science and Technology, 54(18), 11405–11413. https://doi.org/10.1021/acs.est.0c02558

Jalaludin, J., Noh, S. N. S., Suhaimi, N. F., & Akim, A. M. (2014). Tumor necrosis factor-Alpha as biomarkers of exposure to indoor pollutants among primary school children in Klang Valley. American Journal of Applied Sciences, 11(9), 1616–1630. https://doi.org/10.3844/ajassp.2014.1616.1630

Kim, J. H., Woo, H. D., Lee, J. J., Song, D. S., & Lee, K. (2024 a). Association between short-term exposure to ambient air pollutants and biomarkers indicative of inflammation and oxidative stress: A cross-sectional study using KoGES-HEXA data. Environmental Health and Preventive Medicine, 29, 17–17. https://doi.org/10.1265/ehpm.23-00199

Kim, J., Chung, S. J., & Kim, W. J. (2024 b). Biomarkers of the relationship of particulate matter exposure with the progression of chronic respiratory diseases. The Korean Journal of Internal Medicine, 39(1), 25–33. https://doi.org/10.3904/kjim.2023.393

Lakey, P. S., Berkemeier, T., Tong, H., Arangio, A. M., Lucas, K., Pöschl, U., & Shiraiwa, M. (2016). Chemical exposure–response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Scientific Reports, 6(1), 32916. https://doi.org/10.1038/srep32916

Leclercq, B., Platel, A., Antherieu, S., Alleman, L. Y., Hardy, E. M., Perdrix, E., Grova, N., Riffault, V., Appenzeller, B. M., Happillon, M., Nesslany, F., Coddeville, P., Lo-Guidice, J. M., & Garçon, G. (2017). Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2. 5. Environmental Pollution, 230, 163–177. https://doi.org/10.1016/j.envpol.2017.06.028

Lee, H. W., Lee, H. J., Oh, S., Lee, J. K., Heo, E. Y., & Kim, D. K. (2024). Combined effect of changes in NO2, O3, PM2.5, SO2 and CO concentrations on small airway dysfunction. Respirology. https://doi.org/10.1111/resp.14687

Letelier, P., Saldías, R., Loren, P., Riquelme, I., & Guzmán, N. (2023). MicroRNAs as potential biomarkers of environmental exposure to polycyclic aromatic hydrocarbons and their link with inflammation and lung cancer. International Journal of Molecular Sciences, 24(23), 16984. https://doi.org/10.3390/ijms242316984

Li, H., Qian, X., & Wang, Q. G. (2013). Heavy metals in atmospheric particulate matter: A comprehensive understanding is needed for monitoring and risk mitigation. Environmental Science and Technology, 47(23), 13210–13211. https://doi.org/10.1021/es404751a

Li, S. (2024). Reviewing air pollutants generated during the pyrolysis of solid waste for biofuel and biochar production: Toward cleaner production practices. Sustainability, 16(3), 1169. https://doi.org/10.3390/su16031169

Lippi, G., Danese, E., & Montagnana, M. (2024). General information on laboratory tests and biomarkers. In Clinical and laboratory medicine textbook (pp. 77–82). Springer International Publishing.

Lodovici, M., & Bigagli, E. (2011). Oxidative stress and air pollution exposure. Journal of Toxicology, 2011, 487074. https://doi.org/10.1155/2011/487074

Louhelainen, N., Myllärniemi, M., Rahman, I., & Kinnula, V. L. (2008). Airway biomarkers of the oxidant burden in asthma and chronic obstructive pulmonary disease: Current and future perspectives. International Journal of Chronic Obstructive Pulmonary Disease, 3(4), 585–603. https://doi.org/10.2147/copd.s3671

Luo, J., Kibriya, M. G., Jasmine, F., Shaikh, A., Jin, Z., Sargis, R., Kim, K., Olopade, C. O., Pinto, J., Ahsan, H., & Aschebrook-Kilfoy, B. (2024). Duration-sensitive association between air pollution exposure and changes in cardiometabolic biomarkers: Evidence from a predominantly African American cohort. Environmental Research, 240(2), 117496. https://doi.org/10.1016/j.envres.2023.117496

Mainka, A., & Żak, M. (2022). Synergistic or antagonistic health effects of long- and short-term exposure to ambient NO2 and PM2.5:A review. International Journal of Environmental Research and Public Health, 19(21), 14079. https://doi.org/10.3390/ijerph192114079

Misiukiewicz-Stepien, P., & Paplinska-Goryca, M. (2021). Biological effect of PM10 on airway epithelium-focus on obstructive lung diseases. Clinical Immunology, 227, 108754. https://doi.org/10.1016/j.clim.2021.108754

Mollarasouli, F., Bakirhan, N. K., & Ozkan, S. A. (2022). Introduction to biomarkers. In The detection of biomarkers (pp. 1–22). Academic Press.

Mostafavi, N., Vlaanderen, J., Chadeau-Hyam, M., Beelen, R., Modig, L., Palli, D., Bergdahl, I. A., Vineis, P., Hoek, G., Kyrtopoulos, S. Α., & Vermeulen, R. (2015). Inflammatory markers in relation to long-term air pollution. Environment International, 81, 1–7. https://doi.org/10.1016/j.envint.2015.04.003

Palmieri, M. MA, Palmieri, M. A., Giuliani, D. S., Colman Lerner, J. E., Maglione, G., Andrinolo, D. R., & Tasat, D. R. (2020)Monitoring human genotoxicity risk associated to urban and industrial Buenos Aires air pollution exposure. Environmental Science and Pollution Research, 27(12), 13995–14006. https://doi.org/10.1007/s11356-020-07863-9

Park, D., Ha, E. K., Jung, H., Kim, J. H., Shin, J., Kim, M. A., Shin, Y. H., Jee, H. M., & Han, M. Y. (2024). Associations of personal urinary volatile organic compounds and lung function in children. The Journal of Asthma, 1–7. https://doi.org/10.1080/02770903.2024.2303770

Poljšak, B., & Fink, R. (2014). The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxidative Medicine and Cellular Longevity, 2014, 671539. https://doi.org/10.1155/2014/671539

Risom, L., Møller, P., & Loft, S. (2005). Oxidative stress-induced DNA damage by particulate air pollution. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 592(1-2), 119–137. https://doi.org/10.1016/j.mrfmmm.2005.06.012

Rossnerova, A., Spatova, M., Rossner, P., Solansky, I., & Sram, R. J. (2009). The impact of air pollution on the levels of micronuclei measured by automated image analysis. Mutation Research, 669(1–2), 42–47. https://doi.org/10.1016/j.mrfmmm.2009.04.008

Rückerl, R., Greven, S., Ljungman, P., Aalto, P., Antoniades, C., Bellander, T., Berglind, N., Chrysohoou, C., Forastiere, F., Jacquemin, B., Von Klot, S., Koenig, W., Küchenhoff, H., Lanki, T., Pekkanen, J., Perucci, C. A., Schneider, A., Sunyer, J., Peters, A., & AIRGENE Study Group. (2007). Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environmental Health Perspectives, 115(7), 1072–1080. https://doi.org/10.1289/ehp.10021

Sharma, R., Kurmi, O. P., Hariprasad, P., & Tyagi, S. K. (2024). Health implications due to exposure to fine and ultra-fine particulate matters: A short review. International Journal of Ambient Energy, 45(1), 2314256. https://doi.org/10.1080/01430750.2024.2314256

Silbajoris, R., Osornio-Vargas, A. R., Simmons, S. O., Reed, W., Bromberg, P. A., Dailey, L. A., & Samet, J. M. (2011). Ambient particulate matter induces interleukin-8 expression through an alternative NF-κB (nuclear factor-kappa B) mechanism in human airway epithelial cells. Environmental Health Perspectives, 119(10), 1379–1383. https://doi.org/10.1289/ehp.1103594

Squillacioti, G., Bellisario, V., Ghelli, F., Marcon, A., Marchetti, P., Corsico, A. G., Pirina, P., Maio, S., Stafoggia, M., Verlato, G., & Bono, R. (2024). Air pollution and oxidative stress in adults suffering from airway diseases. Insights from the Gene Environment Interactions in Respiratory Diseases (GEIRD) multi-case control study. The Science of the Total Environment, 909, 168601. https://doi.org/10.1016/j.scitotenv.2023.168601

Tavangar, F. Z., Javeri, Z., Nikaeen, M., Sharafi, M., Mohammadi, F., Karimi, H., & Nafez, A. H. (2023). Cytotoxicity and genotoxicity of fine particulate matter (PM2.5): A polluted city experiencing Middle East dust events. Air Quality, Atmosphere and Health, 1–10. https://doi.org/10.1007/s11869-023-01480-4

Valavanidis, A. (2019). Oxidative stress and pulmonary carcinogenesis through mechanisms of reactive oxygen species. How respirable particulate matter, fibrous dusts, and ozone cause pulmonary inflammation and initiate lung carcinogenesis. Oxidative Stress in Lung Diseases, 1, 247–265.

Valavanidis, A., Vlachogianni, T., & Fiotakis, C. (2009). 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis and Ecotoxicology Reviews, 27(2), 120–139. https://doi.org/10.1080/10590500902885684

Vincenzo, S. D., Ferrante, G., Ferraro, M., Cascio, C., Malizia, V., Licari, A., La Grutta, S., & Pace, E. (2023). Oxidative stress, environmental pollution, and lifestyle as Determinants of Asthma in Children. Biology, 12(1), 133. https://doi.org/10.3390/biology12010133

Vineis, P., & Husgafvel-Pursiainen, K. (2005). Air pollution and cancer: Biomarker studies in human populations. Carcinogenesis, 26(11), 1846–1855. https://doi.org/10.1093/carcin/bgi216

Vogli, M., Peters, A., Wolf, K., Thorand, B., Herder, C., Koenig, W., Cyrys, J., Maestri, E., Marmiroli, N., Karrasch, S., Zhang, S., & Pickford, R. (2024). Long-term exposure to ambient air pollution and inflammatory response in the KORA study. The Science of the Total Environment, 912, 169416. https://doi.org/10.1016/j.scitotenv.2023.169416

Wesley, A. D., & Jalaludin, J. (2015). Indoor air pollutant exposure and eosinophil cationic protein as an upper airway inflammatory biomarker among preschool children. Procedia Environmental Sciences, 30, 297–302. https://doi.org/10.1016/j.proenv.2015.10.053

Zhu, F., Ding, R., Lei, R., Cheng, H., Liu, J., Shen, C., Zhang, C., Xu, Y., Xiao, C., Li, X., Zhang, J., & Cao, J. (2019). The short-term effects of air pollution on respiratory diseases and lung cancer mortality in Hefei: A time-series analysis. Respiratory Medicine, 146, 57–65. https://doi.org/10.1016/j.rmed.2018.11.019

Published

2024-06-05

How to Cite

Gupta , R., & Yadav, S. (2024). Biomarkers in Air Pollution Exposure Health Risk Assessment. Contemporary Advances in Science and Technology, 7, 55-64. https://doi.org/10.70130/CAST.2024.7105

Similar Articles

You may also start an advanced similarity search for this article.