Understanding Polycyclic Aromatic Hydrocarbons (PAHs) and Derivatives: Sources, Properties, and Health Impacts

Authors

DOI:

https://doi.org/10.70130/CAST.2024.7106

Keywords:

toxic, Health hazards, organic pollutant, mutagenic, carcinogenic

Abstract

PAHs, persistent organic pollutants (POPs), composed of 2-7 fused aromatic rings, emerge from processes involving incomplete combustion of organic materials. Released into the ambient air as vapors or adsorbed onto airborne particulate matter, these compounds undergo complex photochemical reactions with atmospheric pollutants such as ozone, NOX, SOX, and OH radicals and result in the formation of its derivatives which possess remarkably higher toxicity and carcinogenicity than its parent PAHs. This chapter delves into the contemporary knowledge surrounding Polycyclic Aromatic Hydrocarbons (PAHs) and their derivatives, shedding light on their sources, formation mechanisms, and inherent properties. It also comprehensively reviews the global status.

Author Biographies

  • Gunjan Goswami, Department of Chemistry, Dayalbagh Educational Institute, Agra, India

    Department of Chemistry, Research Scholar

  • Anita Lakhani, Department of Chemistry, Dayalbagh Educational Institute, Agra, India

    Department of Chemistry, Professor (Supervisor)

References

ACGIH (American Conference of Governmental Industrial Hygienists). (2005). Polycyclic aromatic hydrocarbons (PAHs) biologic exposure indices (BEI). American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

Akyüz, M., & Çabuk, H. (2010). Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. The Science of the Total Environment, 408(22), 5550–5558. https://doi.org/10.1016/j.scitotenv.2010.07.063

Albuquerque, M., Coutinho, M., & Borrego, C. (2016). Long-term monitoring and seasonal analysis of polycyclic aromatic hydrocarbons (PAHs) measured over a decade in the ambient air of Porto, Portugal. The Science of the Total Environment, 543(A), 439–448. https://doi.org/10.1016/j.scitotenv.2015.11.064

Alves, C. A., Vicente, A. M., Custódio, D., Cerqueira, M., Nunes, T., Pio, C., Lucarelli, F., Calzolai, G., Nava, S., Diapouli, E., Eleftheriadis, K., Querol, X., & Musa Bandowe, B. A. (2017). Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from southern European cities. The Science of the Total Environment, 595, 494–504. https://doi.org/10.1016/J.SCITOTENV.2017.03.256

Amador-Muñoz, O., Villalobos-Pietrini, R., Miranda, J., & Vera-Avila, L. E. (2011). Organic compounds of PM2.5 in Mexico Valley: Spatial and temporal patterns, behavior and sources. The Science of the Total Environment, 409(8), 1453–1465. https://doi.org/10.1016/J.SCITOTENV.2010.11.026

Ambade, B., Kumar, A., & Kumar Sahu, L. (2022) n.d. Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons (PAHs) in Indoor and Outdoor atmosphere of Central East India. https://doi.org/10.1007/s11356-021-14606-x

Ambade, B., Kumar, A., & Sahu, L. K. (2021). Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor atmosphere of Central East India. Environmental Science and Pollution Research International, 28(40), 56269–56280. https://doi.org/10.1007/s11356-021-14606-x

Ansari, F. A., Khan, A. H., Patel, D. K., Siddiqui, H., Sharma, S., Ashquin, M., & Ahmad, I. (2010). Indoor exposure to respirable particulate matter and particulate-phase PAHs in rural homes in North India. Environmental Monitoring and Assessment, 170(1–4), 491–497. https://doi.org/10.1007/s10661-009-1249-2

Bandowe, B. A. M., & Meusel, H., Huang, R. jin, Ho, K., Cao, J., Hoffmann, T., Wilcke, W., 2014. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Science of the Total Environment 473–474, 77–87. https://doi.org/10.1016/j.scitotenv.2013.11.108.

Barradas-Gimate, A., Murillo-Tovar, M. A., Díaz-Torres, J., Hernández-Mena, L., Saldarriaga-Noreña, H., Delgado-Saborit, J. M., & López-López, A. (2017). Occurrence and potential sources of quinones associated with PM2.5 in Guadalajara, Mexico. Atmosphere, 8(8). https://doi.org/10.3390/atmos8080140

Barrado, A. I., García, S., Castrillejo, Y., & Barrado, E. (2013). Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles. Correlations with physical and chemical factors. Atmospheric Environment, 67, 385–393. https://doi.org/10.1016/J.ATMOSENV.2012.10.030

Bernalte, E., Marín Sánchez, C., Pinilla Gil, E., Cereceda Balic, F., & Vidal Cortez, V. (2012). An exploratory study of particulate PAHs in low-polluted urban and rural areas of South-West Spain: Concentrations, source assignment, seasonal variation and correlations with other air pollutants. Water, Air, and Soil Pollution, 223(8), 5143–5154. https://doi.org/10.1007/s11270-012-1266-6

Besis, A., Tsolakidou, A., Balla, D., Samara, C., Voutsa, D., Pantazaki, A., Choli-Papadopoulou, T., & Lialiaris, T. S. (2017). Toxic organic substances and marker compounds in size-segregated urban particulate matter implications for involvement in the in vitro bioactivity of the extractable organic matter. Environmental Pollution, 230, 758–774. https://doi.org/10.1016/j.envpol.2017.06.096

Charrier, J. G., McFall, A. S., Richards-Henderson, N. K., & Anastasio, C. (2014). Hydrogen peroxide formation in a surrogate lung fluid by transition metals and quinones present in particulate matter. Environmental Science and Technology, 48(12), 7010–7017. https://doi.org/10.1021/es501011w

Cheruiyot, N. K., Lee, W.-J., Mwangi, J. K., Wang, L.-C., Lin, N.-H., Lin, Y.-C., Cao, J., Zhang, R., & Chang-Chien, G.-P. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol and Air Quality Research, 15(7), 2730–2762. https://doi.org/10.4209/aaqr.2015.11.0627

Cho, A. K., Di Stefano, E., You, Y., Rodriguez, C. E., Schmitz, D. A., Kumagai, Y., Miguel, A. H., Eiguren-Fernandez, A., Kobayashi, T., Avol, E., & Froines, J. R. (2004). Determination of four quinones in diesel exhaust particles, SRM 1649a, and atmospheric PM2.5. Aerosol Science and Technology, 38, sup1, 68–81. https://doi.org/10.1080/02786820390229471

Chomanee, J., Tekasakul, S., Tekasakul, P., & Furuuchi, M. (2018). Effect of irradiation energy and residence time on decomposition efficiency of polycyclic aromatic hydrocarbons (PAHs) 699 from rubber wood combustion emission using soft X-rays. Chemosphere, 210, 417–423. https://doi.org/10.1016/j.chemosphere.2018.07.001

Cincinelli, A., del Bubba, M. D., Martellini, T., Gambaro, A., & Lepri, L. (2007). Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere, 68(3), 472–478. https://doi.org/10.1016/j.chemosphere.2006.12.089

Singh, D. P., Gadi, R., & Mandal, T. K. (2012). Characterization. Polycyclic Aromatic Compounds, 32(4), 556–579. https://doi.org/10.1080/10406638.2012.683230

Degrendele, C., Kanduč, T., Kocman, D., Lammel, G., Cambelová, A., Dos Santos, S. G., Horvat, M., Kukučka, P., Holubová Šmejkalová, A., Mikeš, O., Nuñez-Corcuera, B., Přibylová, P., Prokeš, R., Saňka, O., Maggos, T., Sarigiannis, D., & Klánová, J. (2021). NPAHs and OPAHs in the atmosphere of two central European cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning. The Science of the Total Environment, 793, 148528. https://doi.org/10.1016/j.scitotenv.2021.148528

Delgado-Saborit, J. M., Alam, M. S., Godri Pollitt, K. J., Stark, C., & Harrison, R. M. (2013). Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmospheric Environment, 77, 974–982. https://doi.org/10.1016/j.atmosenv.2013.05.080

dos Santos, R. R., Cardeal, Z. L., & Menezes, H. C. (2020). Phase distribution of polycyclic aromatic hydrocarbons and their oxygenated and nitrated derivatives in the ambient air of a Brazilian urban area☆. Chemosphere, 250, 126223. https://doi.org/10.1016/j.chemosphere.2020.126223

Drotikova, T., Dekhtyareva, A., Kallenborn, R., & Albinet, A. (2021). Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: Seasonal trends and local anthropogenic influence. Atmospheric Chemistry and Physics, 21(18), 14351–14370. https://doi.org/10.5194/acp-21-14351-2021

Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., & Oberdörster, G. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environmental Health Perspectives, 114(8), 1172–1178. https://doi.org/10.1289/ehp.9030

Elzein, A., Dunmore, R. E., Ward, M. W., Hamilton, J. F., & Lewis, A. C. (2019). Variability of polycyclic aromatic hydrocarbons and their oxidative derivatives in wintertime Beijing, China. Atmospheric Chemistry and Physics, 19(13), 8741–8758. https://doi.org/10.5194/acp-19-8741-2019

https://www.enviro.wiki/index.php?title=Polycyclic_Aromatic_Hydrocarbons_%28PAHs%29

Gao, P., Deng, F., Chen, W.-S., Zhong, Y.-J., Cai, X.-L., Ma, W.-M., Hu, J., & Feng, S.-R. (2022). Health risk assessment of inhalation exposure to airborne particle-bound nitrated polycyclic aromatic hydrocarbons in urban and suburban areas of South China. International Journal of Environmental Research and Public Health, 19(23). https://doi.org/10.3390/ijerph192315536

Gope, M., Masto, R. E., Basu, A., Bhattacharyya, D., Saha, R., Hoque, R. R., Khillare, P. S., & Balachandran, S. (2020). Elucidating the distribution and sources of street dust bound PAHs in Durgapur, India: A probabilistic health risk assessment study by Monte-Carlo simulation. Environmental Pollution, 267, 115669. https://doi.org/10.1016/j.envpol.2020.115669

Gune, M. M., Ma, W.-L., Sampath, S., Li, W., Li, Y.-F., Udayashankar, H. N., Balakrishna, K., & Zhang, Z. (2019). Occurrence of polycyclic aromatic hydrocarbons (PAHs) in air and soil surrounding a coal-fired thermal power plant in the south-west coast of India. Environmental Science and Pollution Research International, 26(22), 22772–22782. https://doi.org/10.1007/s11356-019-05380-y

Gurbani, D., Bharti, S. K., Kumar, A., Pandey, A. K., Ana, G. R. E. E., Verma, A., Khan, A. H., Patel, D. K., Mudiam, M. K. R., Jain, S. K., Roy, R., & Dhawan, A. (2013). Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. International Journal of Hygiene and Environmental Health, 216(5), 553–565. https://doi.org/10.1016/j.ijheh.2013.04.001

Hassan, S. K., & Khoder, M. I. (2012). Gas–particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza, Egypt. Environmental Monitoring and Assessment, 184(6), 3593–3612. https://doi.org/10.1007/s10661-011-2210-8

Hattori, T., Tang, N., Tamura, K., Hokoda, A., Yang, X. Y., Igarashi, K., Ohno, M., Okada, Y., Kameda, T., Toriba, A., & Hayakawa, K. (2007). Particulate polycyclic aromatic hydrocarbons and their nitrated derivatives in three cities in Liaoning Province, China. Environmental Forensics, 8(1–2), 165–172. https://doi.org/10.1080/15275920601180701

Hazarika, N., Srivastava, A., & Das, A. (2017). Quantification of particle bound metallic load and PAHs in urban environment of Delhi, India: Source and toxicity assessment. Sustainable Cities and Society, 29, 58–67. https://doi.org/10.1016/j.scs.2016.11.010

Health Effects Institute. (2022). a Special Report on Global Exposure To.

Hu, S., Polidori, A., Arhami, M., Shafer, M. M., Schauer, J. J., Cho, A., & Sioutas, C. (2008). Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Longbeach harbor. Atmospheric Chemistry and Physics, 8(21), 6439–6451. https://doi.org/10.5194/acp-8-6439-2008

Huang, J., Liu, Q. C., & Guo, X. B. (2018). Short-term effects of particulate air pollution on human health. Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10991-1

Huma, B., Yadav, S., & Attri, A. K. (2016). Profile of particulate-bound organic compounds in ambient environment of Srinagar: A high-altitude urban location in the North-Western Himalayas. Environmental Science and Pollution Research International, 23(8), 7660–7675. https://doi.org/10.1007/s11356-015-5994-1

IARC (International Agency for Research on Cancer). (2010). Some 806 non-heterocyclic polycyclic aromatic hydrocarbons and some 807 related exposures. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 92(808), 765–771.

Jaafari, J., Naddafi, K., Yunesian, M., Nabizadeh, R., Hassanvand, M. S., Ghozikali, M. G., Shamsollahi, H. R., Nazmara, S., & Yaghmaeian, K. (2020). Characterization, risk assessment and potential source identification of PM10 in Tehran. Microchemical Journal, 154, 104533. https://doi.org/10.1016/j.microc.2019.104533

Kaur, S., Kumar, B., Chakraborty, P., Kumar, V., & Kothiyal, N. C. (2022). Polycyclic aromatic hydrocarbons in PM10 of a north-western city, India: Distribution, sources, toxicity and health risk assessment. International Journal of Environmental Science and Technology, 19(2), 1041–1056. https://doi.org/10.1007/s13762-021-03450-8

Kawanaka, Y., Matsumoto, E., Sakamoto, K., Wang, N., & Yun, S. J., 830. (2004). Size distributions of mutagenic compounds and muta- 831 genicity in atmospheric particulate matter collected with a 832 low-pressure cascade impactor. Atmospheric Environment, 38(833), 2125–2132.

Kishida, M., Nishikawa, A., Fujimori, K., & Shibutani, Y. (2011). Gas–particle concentrations of atmospheric polycyclic aromatic hydrocarbons at an urban and a residential site in Osaka, Japan: Effect of the formation of atmospherically stable layer on their temporal change. Journal of Hazardous Materials, 192(3), 1340–1349. https://doi.org/10.1016/j.jhazmat.2011.06.046

Kong, S. F., Ji, Y. Q., Li, Z. Y., Lu, B., & Bai, Z. P. (2013). Emission and profile characteristic of polycyclic aromatic hydrocarbons in PM2.5 and PM10 from stationary sources based on dilution sampling. Atmospheric Environment, 77, 155–165. https://doi.org/10.1016/j.atmosenv.2013.04.073

Kreyling, W. G., Semmler-Behnke, M., Seitz, J., Scymczak, W., Wenk, A., Mayer, P., Takenaka, S., & Oberdörster, G. (2009). Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhalation Toxicology, 21, Suppl. 1, 55–60. https://doi.org/10.1080/08958370902942517

Kumar, A., Sankar, T. K., Sethi, S. S., & Ambade, B. (2020). Characteristics, toxicity, source identification and seasonal variation of atmospheric polycyclic aromatic hydrocarbons over East India. Environmental Science and Pollution Research International, 27(1), 678–690. https://doi.org/10.1007/s11356-019-06882-5

Kumar, V., Kothiyal, N. C., Saruchi, , & Masih, A. (2014). Environmental fate and behavior of some PAHs at roadside ambient air in a fast developing city environment of northern India. Journal of the Chinese Advanced Materials Society, 2(2), 82–98. https://doi.org/10.1080/22243682.2014.908740

Lakhani, A. (2012). Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra, India. TheScientificWorldJournal, 2012, 781291. https://doi.org/10.1100/2012/781291

Lakhani, A. (2018). Polycyclic aromatic hydrocarbons: Sources, importance and fate in the atmospheric environment. Current Organic Chemistry, 22(11), 1050–1069. https://doi.org/10.2174/1385272822666180515115719

Lammel, G., Kitanovski, Z., Kukučka, P., Novák, J., Arangio, A. M., Codling, G. P., Filippi, A., Hovorka, J., Kuta, J., Leoni, C., Příbylová, P., Prokeš, R., Sáňka, O., Shahpoury, P., Tong, H., & Wietzoreck, M. (2020). Oxygenated and nitrated polycyclic aromatic hydrocarbons in ambient air – Levels, phase partitioning, mass size distributions, and inhalation bioaccessibility. Environmental Science and Technology, 54(5), 2615–2625. https://doi.org/10.1021/acs.est.9b06820

Lara, S., Villanueva, F., Martín, P., Salgado, S., Moreno, A., & Sánchez-Verdú, P. (2022). Investigation of PAHs, nitrated PAHs and oxygenated PAHs in PM10 urban aerosols. A comprehensive data analysis. Chemosphere, 294, 133745. https://doi.org/10.1016/j.chemosphere.2022.133745

Lee, H. H., Choi, N. R., Lim, H. B., Yi, S. M., Kim, Y. P., & Lee, J. Y. (2018). Characteristics of oxygenated PAHs in PM10 at Seoul, Korea. Atmospheric Pollution Research, 9(1), 112–118. https://doi.org/10.1016/j.apr.2017.07.007

Li, W., Shen, G., Yuan, C., Wang, C., Shen, H., Jiang, H., Zhang, Y., Chen, Y., Su, S., Lin, N., & Tao, S. (2016). The gas/particle partitioning of nitro- and oxy-polycyclic aromatic hydrocarbons in the atmosphere of northern China. Atmospheric Research, 172–173, 66–73. https://doi.org/10.1016/j.atmosres.2015.12.008

Liu, B., Xue, Z., Zhu, X., & Jia, C. (2017). Long-term trends (1990–2014), health risks, and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the U.S. Environmental Pollution, 220(B), 1171–1179. https://doi.org/10.1016/j.envpol.2016.11.018

Lv, Y., Li, X., Xu, T. T., Cheng, T. T., Yang, X., Chen, J. M., Iinuma, Y., & Herrmann, H. (2016). Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: Sorption mechanism and source contributions to respiratory deposition. T. and T. X. Atmospheric Chemistry and Physics, 16(5), 2971–2983. https://doi.org/10.5194/acp-16-2971-2016

Masih, A., Saini, R., Singhvi, R., & Taneja, A. (2010). Concentrations, sources, and exposure profiles of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in the north central part of India. Environmental Monitoring and Assessment, 163(1–4), 421–431. https://doi.org/10.1007/s10661-009-0846-4

Masih, J., Singhvi, R., Kumar, K., Jain, V. K., & Taneja, A. (2012). Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi arid tract of Northern India. Aerosol and Air Quality Research, 12(4), 515–525. https://doi.org/10.4209/aaqr.2011.11.0192

Masto, R. E., Singh, M. K., Rout, T. K., Kumar, A., Kumar, S., George, J., Selvi, V. A., Dutta, P., Tripathi, R. C., & Srivastava, N. K. (2019). Health risks from PAHs and potentially toxic elements in street dust of a coal mining area in India. Environmental Geochemistry and Health, 41(5), 1923–1937. https://doi.org/10.1007/s10653-019-00250-5

Mills, N. L., Amin, N., Robinson, S. D., Anand, A., Davies, J., Patel, D., de la Fuente, J. M., Cassee, F. R., Boon, N. A., Macnee, W., Millar, A. M., Donaldson, K., & Newby, D. E. (2006). Do inhaled carbon nanoparticles translocate directly into the circulation in humans? American Journal of Respiratory and Critical Care Medicine, 173(4), 426–431. https://doi.org/10.1164/rccm.200506-865OC

Mitra, S., Corsolini, S., Pozo, K., Audy, O., Sarkar, S. K., & Biswas, J. K. (2019). Characterization, source identification and risk associated with polyaromatic and chlorinated organic contaminants (PAHs, PCBs, PCBzs and OCPs) in the surface sediments of Hooghly estuary, India. Chemosphere, 221, 154–165. https://doi.org/10.1016/j.chemosphere.2018.12.173

Mohanraj, R., Solaraj, G., & Dhanakumar, S. (2011a). Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environmental Science and Pollution Research International, 18(5), 764–771. https://doi.org/10.1007/s11356-010-0423-y

Mohanraj, R., Solaraj, G., & Dhanakumar, S. (2011b). PM 2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India. Bulletin of Environmental Contamination and Toxicology, 87(3), 330–335. https://doi.org/10.1007/s00128-011-0349-1

Möller, W., Felten, K., Sommerer, K., Scheuch, G., Meyer, G., Meyer, P., Häussinger, K., & Kreyling, W. G. (2008). Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. American Journal of Respiratory and Critical Care Medicine, 177(4), 426–432. https://doi.org/10.1164/rccm.200602-301OC

Nocun, M. S., & Schantz, M. M. (2013). Determination of selected oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in diesel and air particulate matter standard reference materials (SRMs). Analytical and Bioanalytical Chemistry, 405(16), 5583–5593. https://doi.org/10.1007/s00216-013-6957-3

Pedersen, D. U., Durant, J. L., Taghizadeh, K., Hemond, H. F., Lafleur, A. L., & Cass, G. R. (2005). Human cell mutagens in respirable airborne particles from the northeastern United States. 2. Quantification of mutagens and other organic compounds. Environmental Science and Technology, 39(24), 9547–9560. https://doi.org/10.1021/es050886c

Phoungthong, K., Tekasakul, S., Tekasakul, P., & Furuuchi, M. (2017). Comparison of particulate matter and polycyclic aromatic hydrocarbons in emissions from IDI-turbo diesel engine fueled by palm oil –diesel blends during long-term usage. Atmospheric Pollution Research, 8(2), 344–350. https://doi.org/10.1016/j.apr.2016.10.006

Primbs, T., Piekarz, A., Wilson, G., Schmedding, D., Higginbotham, C., Field, J., & Simonich, S. M. (2008). Influence of Asian and western United States urban areas and fires on the atmospheric transport of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fluorotelomer alcohols in the Western United States. Environmental Science and Technology, 42(17), 6385–6391. https://doi.org/10.1021/es702160d

Rajput, P., Sarin, M., & Kundu, S. S. (2013). Atmospheric particulate matter (PM2.5), EC, OC. Atmospheric Pollution Research, 4(2), 214–221. https://doi.org/10.5094/APR.2013.022

Ravindra, K., Sokhi, R., & Vangrieken, R. V. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010

Ray, D., Chatterjee, A., Majumdar, D., Ghosh, S. K., & Raha, S. (2017). Polycyclic aromatic hydrocarbons over a tropical urban and a high-altitude Himalayan Station in India: Temporal variation and source apportionment. Atmospheric Research, 197, 331–341. https://doi.org/10.1016/J.ATMOSRES.2017.07.010

IQAir. (2022). Region & city PM, 2022. World Air Quality Report2.5 Ranking. IQAir (pp. 1–41).

Ringuet, J., Albinet, A., Leoz-Garziandia, E., Budzinski, H., & Villenave, E. (2012). Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants. Atmospheric Environment, 61, 15–22. https://doi.org/10.1016/J.ATMOSENV.2012.07.025

Saha, M., Maharana, D., Kurumisawa, R., Takada, H., Yeo, B. G., Rodrigues, A. C., Bhattacharya, B., Kumata, H., Okuda, T., He, K., Ma, Y., Nakajima, F., Zakaria, M. P., Giang, D. H., & Viet, P. H. (2017). Seasonal trends of atmospheric PAHs in five Asian megacities and source detection using suitable biomarkers. Aerosol and Air Quality Research, 17(9), 2247–2262. https://doi.org/10.4209/aaqr.2017.05.0163

Sampath, S., Shanmugam, G., Selvaraj, K. K., & Ramaswamy, B. R. (2015). Spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in atmospheric air of Tamil Nadu, India, and human health risk assessment. Environmental Forensics, 16(1), 76–87. https://doi.org/10.1080/15275922.2014.991002

Sarkar, S., & Khillare, P. S. (2011). Association of polycyclic aromatic hydrocarbons (PAHs) and metallic species in a tropical urban atmosphere – Delhi, India. Journal of Atmospheric Chemistry, 68(2), 107–126. https://doi.org/10.1007/s10874-012-9212-y

Shen, R. R., Wang, Y. S., Gao, W. K., Cong, X. G., Cheng, L. L., & Li, X. R. (2019). Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment. The Science of the Total Environment, 685, 116–123. https://doi.org/10.1016/j.scitotenv.2019.05.436

Singh, A., Kamal, R., Mudiam, M. K. R., Gupta, M. K., Satyanarayana, G. N. V., Bihari, V., Shukla, N., Khan, A. H., & Kesavachandran, C. N. (2016). Heat and PAHs emissions in indoor kitchen air and its impact on kidney dysfunctions among kitchen workers in Lucknow, North India. PLOS ONE, 11(2), e0148641. https://doi.org/10.1371/journal.pone.0148641

Singh, B. P., Kumar, K., & Jain, V. K. (2021). Source identification and health risk assessment associated with particulate- and gaseous-phase PAHs at residential sites in Delhi, India. Air Quality, Atmosphere and Health, 14(10), 1505–1521. https://doi.org/10.1007/s11869-021-01035-5

Song, H. J., Zhang, Y., Luo, M., Gu, J. Z., Wu, M. H., Xu, D. D., Xu, G., & Ma, L. (2019). Seasonal variation, sources and health risk assessment of polycyclic aromatic hydrocarbons in different particle fractions of PM2.5 in Beijing, China. Atmospheric Pollution Research, 10(1), 105–114. https://doi.org/10.1016/j.apr.2018.06.012

Sousa, E. T., Cardoso, M. P., Silva, L. A., & de Andrade, J. B. (2015). Direct determination of quinones in fine atmospheric particulate matter by GC-MS. Microchemical Journal, 118, 26–31. https://doi.org/10.1016/j.microc.2014.07.013

Sun, J., Shen, Z., Zhang, T., Kong, S., Zhang, H., Zhang, Q., Niu, X., Huang, S., Xu, H., Ho, K.-F., & Cao, J. (2022). A comprehensive evaluation of PM 2.5 -bound PAHs and their derivative in winter from six megacities in China: Insight the source-dependent health risk and secondary reactions. Environment International, 165, 107344. https://doi.org/10.1016/j.envint.2022.107344

Tang, N., Araki, Y., Tamura, K., Dong, L. J., Zhang, X. M., & Liu, Q. H. (2009). Distribution and source of atmospheric polycyclic 1035 aromatic hydrocarbons and nitropolycyclic aromatic hydro1036 carbons in Tieling City, Liaoning Province, a typical local city in 1037 Northeast China. et 1034 al. Asian Journal of Atmospheric Environment, 3(1), 52–58

Tarafdar, A., & Sinha, A. (2019). Health risk assessment and source study of PAHs from roadside soil dust of a heavy mining area in India. Archives of Environmental and Occupational Health, 74(5), 252–262. https://doi.org/10.1080/19338244.2018.1444575

Tiwari, M., Sahu, S. K., Rathod, T. D., Bhangare, R. C., Ajmal, P. Y., & Kumar, A. V. (2020). Measurement of size-fractionated atmospheric particulate matter and associated polycyclic aromatic hydrocarbons in Mumbai, India, and their dry deposition fluxes. Air Quality, Atmosphere and Health, 13(8), 939–949. https://doi.org/10.1007/s11869-020-00849-z

Tomaz, S., Shahpoury, P., Jaffrezo, J.-L., Lammel, G., Perraudin, E., Villenave, E., & Albinet, A. (2016). One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. The Science of the Total Environment, 565, 1071–1083. https://doi.org/10.1016/j.scitotenv.2016.05.137

USEPA. (1999). Compendium method TO-13A, determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/M. United States Environmental Protection Agency.

Vardar, N., Esen, F., & Tasdemir, Y. (2008). Seasonal concentrations and partitioning of PAHs in a suburban site of Bursa, Turkey. Environmental Pollution, 155(2), 298–307. https://doi.org/10.1016/j.envpol.2007.11.026

Verma, P. K., Sah, D., Kumari, K. M., & Lakhani, A. (2017). Atmospheric concentrations and gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs at Indo-Gangetic sites. Environmental Science. Processes and Impacts, 19(8), 1051–1060. https://doi.org/10.1039/c7em00168a

Vuković, G., Aničić Urošević, M., Razumenić, I., Kuzmanoski, M., Pergal, M., Škrivanj, S., & Popović, A. (2014). Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring. Atmospheric Environment, 85, 31–40. https://doi.org/10.1016/j.atmosenv.2013.11.053

Walgraeve, C., Chantara, S., Sopajaree, K., De Wispelaere, P., Demeestere, K., & Van Langenhove, H. (2015). Quantification of PAHs and oxy-PAHs on airborne particulate matter in Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry. Atmospheric Environment, 107, 262–272. https://doi.org/10.1016/j.atmosenv.2015.02.051

Wang, W., Huang, M.-J., Kang, Y., Wang, H.-S., Leung, A. O. W., Cheung, K. C., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. The Science of the Total Environment, 409(21), 4519–4527. https://doi.org/10.1016/j.scitotenv.2011.07.030

Wei, C., Bandowe, B. A. M., Han, Y., Cao, J., Watson, J. G., Chow, J. C., & Wilcke, W. (2021). Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs, and azaarenes) in air from four climate zones of China: Occurrence, gas/particle partitioning, and health risks. The Science of the Total Environment, 786, 147234. https://doi.org/10.1016/j.scitotenv.2021.147234

Wei, C., Bandowe, B. A. M., Han, Y., Cao, J., Zhan, C., & Wilcke, W. (2015). Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere, 134, 512–520. https://doi.org/10.1016/j.chemosphere.2014.11.052

Wei, Y., Han, I.-K., Hu, M., Shao, M., Zhang, J. J., & Tang, X. (2010). Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. Chemosphere, 81(10), 1280–1285. https://doi.org/10.1016/j.chemosphere.2010.08.055

Wnorowski, A., & Charland, J.-P. (2017). Profiling quinones in ambient air samples collected from the Athabasca region (Canada). Chemosphere, 189, 55–66. https://doi.org/10.1016/j.chemosphere.2017.09.003

World Health Organization. (2010). Monographs on the evaluation of carcinogenic risks to humans. In Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures p. 92. IARC.

Yagishita, M., Kageyama, S., Ohshima, S., Matsumoto, M., Aoki, Y., Goto, S., & Nakajima, D. (2015). Atmospheric concentration and carcinogenic risk of polycyclic aromatic hydrocarbons including benzo[c]fluorene, cyclopenta[c,d]pyrene, and benzo[j]fluoranthene in Japan. Atmospheric Environment, 115, 263–268. https://doi.org/10.1016/j.atmosenv.2015.05.050

Yang, Y., Guo, P., Zhang, Q., Li, D., Zhao, L., & Mu, D. (2010). Seasonal variation, sources and gas/particle partitioning of polycyclic aromatic hydrocarbons in Guangzhou, China. The Science of the Total Environment, 408(12), 2492–2500. https://doi.org/10.1016/j.scitotenv.2010.02.043

Zhang, J., Yang, L., Mellouki, A., Chen, J., Chen, X., Gao, Y., Jiang, P., Li, Y., Yu, H., & Wang, W. (2018). Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmospheric Environment, 173, 256–264. https://doi.org/10.1016/J.ATMOSENV.2017.11.002

Zhou, J. B., Wang, T. G., Huang, Y. B., Mao, T., & Zhong, N. N. (2005). Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China. Chemosphere, 61(6), 792–799. https://doi.org/10.1016/j.chemosphere.2005.04.002

Published

2024-06-09

Issue

Section

Research Articles

How to Cite

Bamola, S., Goswami, G. ., & Lakhani, A. (2024). Understanding Polycyclic Aromatic Hydrocarbons (PAHs) and Derivatives: Sources, Properties, and Health Impacts. Contemporary Advances in Science and Technology, 7, 65-90. https://doi.org/10.70130/CAST.2024.7106