Applications of nanomaterials to improve Phytoremediation

Nanoparticle Applications in Plant-Based Environmental Remediation Strategies

Authors

  • Jyoti Sharma Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana Author

DOI:

https://doi.org/10.5281/

Keywords:

nanomaterial, phytoremediation, pollutants, human health

Abstract

Phytoremediation is a promising plant-based approach for the removal of metallic contaminants from soil. However, its effectiveness is limited by factors such as plant tolerance, growth rate, and biomass. The integration of nanomaterials with phytoremediation has emerged as a potential solution to enhance the efficiency of this process. Nanomaterials can improve phytoremediation by directly removing pollutants, promoting plant growth, and increasing the phytoavailability of contaminants. Various nanomaterials such as carbon nanotubes, nano-hydroxyapatite, iron oxide nanoparticles, silver nanoparticles, and zinc oxide nanoparticles have been successfully employed in the phytoremediation of heavy metals like lead, cadmium, mercury, and chromium. These nanomaterials act as adsorbents, carriers, or growth regulators, facili-tating the uptake and accumulation of pollutants by plants. The choice of nanomaterial depends on the nature of the con-taminant and the plant species used. While nanomaterial-assisted phytoremediation offers several advantages, such as cost-effectiveness, eco-friendliness, and in-situ applicability, it also has limitations, including potential toxicity to plants and the environment. Further research is needed to optimize the use of nanomaterials in phytoremediation and address the challenges associated with their application. Overall, the integration of nanotechnology with phytoremediation holds great promise for the sustainable remediation of contaminated soils.

References

Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmention: A review. In-ternational Journal of Environmental Bioremediation and Biodegradation, 3, 28–39.

Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161–175. https://doi.org/10.3109/07388550903524243

Ahmad, P., Nabi, G., & Ashraf, M. (2011). Cadmium-induced oxidative damage in mustard Brassica juncea (L.) Czern. & Coss. South African Journal of Botany, 77(1), 36–44. https://doi.org/10.1016/j.sajb.2010.05.003

Ahmad, P., Sarwat, M., Bhat, N. A., Wani, M. R., Kazi, A. G., & Tran, L. S. (2015). Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLOS ONE, 10(1), e0114571. https://doi.org/10.1371/journal.pone.0114571

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

An, B., Steinwinder, T. R., & Zhao, D. (2005). Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Research, 39(20), 4993–5004. https://doi.org/10.1016/j.watres.2005.10.014

Ankamwar, B. (2010). Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-journal of chemistry, 7(4), 1334–1339.

Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclama-tion of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

Awa, S. H., & Hadibarata, T. (2020). Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water, Air, and Soil Pollution, 231(2), 47. https://doi.org/10.1007/s11270-020-4426-0

Beattie, I. R., & Haverkamp, R. G. (2011). Silver and gold nanoparticles in plants: Sites for their reduction to metal. Metallomics, 6(6), 628–632.

Berti, W. R., & Cunningham, S. D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals – Using plants to clean-up the environment (pp. 71–88). John Wiley & Sons, Inc.

Bharagava, R. N. (2020). Saxena, Mulla, G: S. I. Introduction to industrial wastes containing organic and inorganic pollutants and bio-remediation approaches for environmental management. In Bioremediation of industrial waste for environmental safety. Springer.

Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Jour-nal of Environmental Management, 105, 103–120. https://doi.org/10.1016/j.jenvman.2012.04.002

Chai, C. S., Koh, J. H. L., & Tsai, C.-C. (2013). A review of technological pedagogical content knowledge. Educational Technology and Society, 16(2), 31–51.

Chakravarty, D., Erande, M. B., & Late, D. J. (2015). Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. Journal of the Science of Food and Agriculture, 95(13), 2772–2778. https://doi.org/10.1002/jsfa.7106

Contado, C. (2015). Nanomaterials in consumer products: A challenging analytical problem. Frontiers in Chemistry, 3, 48. https://doi.org/10.3389/fchem.2015.00048

Dixit, R., Wasiullah, D., Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., Singh, B., Rai, J., Sharma, P., Lade, H., & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fun-damental processes. Sustainability, 7(2), 2189–2212. https://doi.org/10.3390/su7022189

Ehrampoush, M. H., Miria, M., Salmani, M. H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. Journal of Environmental Health Science and Engineering, 13, 84. https://doi.org/10.1186/s40201-015-0237-4

Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29(6), 792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

Gil-Díaz, M., Rodríguez-Alonso, J., Maffiotte, C. A., Baragaño, D., Millán, R., & Lobo, M. C. (2021) Iron nanoparticles are efficient at removing mercury from polluted waters. Journal of Cleaner Production, 315, 128272. https://doi.org/10.1016/j.jclepro.2021.128272

Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5), 383–393. https://doi.org/10.1016/s0734-9750(03)00055-7

Glomstad, B., Altin, D., Sørensen, L., Liu, J., Jenssen, B. M., & Booth, A. M. (2016). Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environmental Science and Technology, 50(5), 2660–2668. https://doi.org/10.1021/acs.est.5b05177

Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1(1), 22. https://doi.org/10.1186/1745-6673-1-22

Gong, X., Huang, D., Liu, Y., Peng, Z., Zeng, G., Xu, P., Cheng, M., Wang, R., & Wan, J. (2018). Remediation of contaminated soils by biotechnology with nanomaterials: Bio-behavior, applications, and perspectives. Critical Reviews in Biotechnology, 38(3), 455–468. https://doi.org/10.1080/07388551.2017.1368446

Haverkamp, R. G., & Marshall, A. T. (2009). The mechanism of metal nanoparticle formation in plants: Limits on accumulation. Jour-nal of Nanoparticle Research, 11(6), 1453–1463. https://doi.org/10.1007/s11051-008-9533-6

Huang, D., Xue, W., Zeng, G., Wan, J., Chen, G., Huang, C., Zhang, C., Cheng, M., & Xu, P. (2016). Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity. Water Research, 106, 15–25. https://doi.org/10.1016/j.watres.2016.09.050

Jadia, C. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8, 921–928.

Kang, J., Duan, X., Wang, C., Sun, H., Tan, X., Tade, M. O., & Wang, S. (2018). Nitrogen doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chemical En-gineering Journal, 332, 398–408. https://doi.org/10.1016/j.cej.2017.09.102

Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nano-tubes as plant growth regulators: Effects on 818 B. SONG ET AL. tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123. https://doi.org/10.1002/smll.201201225

Lee, J. H. (2013). An overview of phytoremediation as a potentially promising technology for environmental pollution control. Bio-technology and Bioprocess Engineering, 18(3), 431–439. https://doi.org/10.1007/s12257-013-0193-8

Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., & Brookes, P. (2018). Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 344, 1–11. https://doi.org/10.1016/j.jhazmat.2017.09.036

Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., Wu, H., Qian, Y., Li, X., & Luo, Y. (2017). Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, 181, 281–288. https://doi.org/10.1016/j.chemosphere.2017.04.081

Lin, D., & Xing, B. (2007). Phytotoxicity of nanoprticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250. https://doi.org/10.1016/j.envpol.2007.01.016

Liu, M., Wang, Z., Zong, S., Chen, H., Zhu, D., Wu, L., Hu, G., & Cui, Y. (2014). SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Applied Materials and Inter-faces, 6(10), 7371–7379. https://doi.org/10.1021/am5006282

Liu, R., & Lal, R. (2012). Nanoenhanced materials for reclamation of mine lands and other degraded soils: A review. Journal of Nano-technology, 2012, 1–18. https://doi.org/10.1155/2012/461468

Long, F., Gong, J. L., Zeng, G. M., Chen, L., Wang, X. Y., Deng, J. H., Niu, Q., Zhang, H., & Zhang, X. (2011). Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chemical Engineering Journal, 171(2), 448–455. https://doi.org/10.1016/j.cej.2011.03.102

Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016a). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174, 14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016b). Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials, 320, 36–44. https://doi.org/10.1016/j.jhazmat.2016.08.009

Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68(1), 1–13. https://doi.org/10.1016/j.envexpbot.2009.10.011

Mahabadi, A. A., Hajabbasi, M. A., Khademi, H., & Kazemian, H. (2007). Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3–4), 388–393. https://doi.org/10.1016/j.geoderma.2006.08.032

Marchiol, L., Mattiello, A., Pošćić, F., Giordano, C., & Musetti, R. (2014). In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Research Letters, 9(1), 101. https://doi.org/10.1186/1556-276X-9-101

Masson, P., Dalix, T., & Bussière, S. (2010). Determination of major and trace elements in plant samples by inductively coupled plas-ma-mass spectrometry. Communications in Soil Science and Plant Analysis, 41(3), 231–243. https://doi.org/10.1080/00103620903460757

Memon, A. R., & Schröder, P. (2009). Implications of metal accumulations mechanisms to phytoremediation. Environmental Science and Pollution Research International, 16(2), 162–175. https://doi.org/10.1007/s11356-008-0079-z

Mills, R. F., Krijger, G. C., Baccarini, P. J., Hall, J. L., & Williams, L. E. (2003). Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant Journal: For Cell and Molecular Biology, 35(2), 164–176. https://doi.org/10.1046/j.1365-313x.2003.01790.x

Mueller, N. C., & Nowack, B. (2010). Nanoparticles for remediation: Solving big problems with little particles. Elements, 6(6), 395–400. https://doi.org/10.2113/gselements.6.6.395

Nedjimi, B. (2009). Calcium can protect Atriplex halimus subsp. schweinfurthii from cadmium toxicity. Acta Botanica Gallica, 156(3), 391–397. https://doi.org/10.1080/12538078.2009.10715082

Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyperaccumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. https://doi.org/10.1007/s11270-007-9401-5

Papoyan, A., & Kochian, L. V. (2004). Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumu-lation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 136(3), 3814–3823. https://doi.org/10.1104/pp.104.044503

Praveen, A., Khan, E., Ngiimei D, S., Perwez, M., Sardar, M., & Gupta, M. (2018). Iron oxide nanoparticles as nano-adsorbents: A possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). Journal of Plant Growth Regula-tion, 37(2), 612–624. https://doi.org/10.1007/s00344-017-9760-0

Qadir, S., Jamshieed, S., Rasool, S., Ashraf, M., Akram, N. A., & Ahmad, P. (2014). Modulation of plant growth and metabolism in cadmium enriched environments. Reviews of Environmental Contamination and Toxicology, 229, 51–88. https://doi.org/10.1007/978-3-319-03777-6_4

Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016

Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407–411. https://doi.org/10.1111/nph.14907

Rugh, C. L., Senecoff, J. F., Meagher, R. B., & Merkle, S. A. (1998). Development of transgenic yellow poplar for mercury phytoreme-diation. Nature Biotechnology, 16(10), 925–928. https://doi.org/10.1038/nbt1098-925

Saison, C., Perreault, F., Daigle, J. C., Fortin, C., Claverie, J., Morin, M., & Popovic, R. (2010). Effect of core-shell copper oxide nano-particles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydo-monas reinhardtii. Aquatic Toxicology, 96(2), 109–114. https://doi.org/10.1016/j.aquatox.2009.10.002

Sakakibara, M., Watanabe, A., Inoue, M., Sano, S., & Kaise, T. (2010). Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata. Proceedings of the Annual International Conference on Soils, Sediments, Water and En-ergy, 12(26).

Shekhawat, G. S., & Arya, V. (2009). Biological synthesis of Ag nanoparticles through in vitro cultures of Brassica juncea Czern. Na-nomaterials and devices: Processing and applications. Book Series. Advanced Materials Research, 67, 295–299. https://doi.org/10.4028/www.scientific.net/AMR.67.295

Singh, J., & Lee, B. K. (2016). Influence of Nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from Critical Reviews in Environmental Science And Technology. Journal of Environmental Management 170, 821 the contaminated soil, 88–96.

Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamina-tion from soil. Applied Microbiology and Biotechnology, 61(5–6), 405–412. https://doi.org/10.1007/s00253-003-1244-4

Song, B., Xu, P., Zeng, G., Gong, J., Zhang, P., Feng, H., Liu, Y., & Ren, X. (2018). Carbon nanotube-based environmental technolo-gies: The adopted properties, primary mechanisms, and challenges. Reviews in Environmental Science and Bio/Technology, 17(3), 571–590. https://doi.org/10.1007/s11157-018-9468-z

Souri, Z., Karimi, N., Sarmadi, M., & Rostami, E. (2017). Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under as stress. IET Nanobiotechnology, 11(6), 650–655. https://doi.org/10.1049/iet-nbt.2016.0202

Su, Y., Yan, X., Pu, Y., Xiao, F., Wang, D., & Yang, M. (2013). Risks of single-walled carbon nanotubes acting as contaminants-carriers: Potential release of phenanthrene in Japanese medaka (Oryzias latipes). Environmental Science and Technology, 47(9), 4704–4710. https://doi.org/10.1021/es304479w

Timmusk, S., Seisenbaeva, G., & Behers, L. (2018). Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizo-bacteria. Scientific Reports, 8(1), 617. https://doi.org/10.1038/s41598-017-18939-x

Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Frontiers in Environmen-tal Science, 4(46), 1–14. https://doi.org/10.3389/fenvs.2016.00046

Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwari, M., Sharma, N., & Sahi, S. V. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc ox-ide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127. https://doi.org/10.1016/j.plaphy.2016.09.004

Vítková, M., Puschenreiter, M., & Komárek, M. (2018). Effect of Nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere, 200, 217–226. https://doi.org/10.1016/j.chemosphere.2018.02.118

Wan, J., Zeng, G., Huang, D., Hu, L., Xu, P., Huang, C., Deng, R., Xue, W., Lai, C., Zhou, C., Zheng, K., Ren, X., & Gong, X. (2018). Rhamnolipid stabilized Nano-chlorapatite: Synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sed-iment. Journal of Hazardous Materials, 343, 332–339. https://doi.org/10.1016/j.jhazmat.2017.09.053

Wang, P., Lombi, E., Zhao, F. J., & Kopittke, P. M. (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Sci-ence, 21(8), 699–712. https://doi.org/10.1016/j.tplants.2016.04.005

Yanık, F., & Vardar, F. (2015). Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water, Air, and Soil Pollution, 226(9), 296. https://doi.org/10.1007/s11270-015-2566-4

Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies soil contaminated by heavy metals. Procedia Environ-mental Sciences, 16, 722–729. https://doi.org/10.1016/j.proenv.2012.10.099

Yogalakshmi, D., Das, K. N., Rani, A., Jaswal, G., & Randhawa, V. (2020). Nano-bioremediation: A new age technology for the treat-ment of dyes in textile effluents. In Bioremediation of industrial waste for environmental safety. Springer.

Yu, B., Zhang, Y., Shukla, A., Shukla, S. S., & Dorris, K. L. (2001). The removal of heavy metals from aqueous solutions by sawdust adsorption—Removal of lead and comparison of its adsorption with copper. Journal of Hazardous Materials, 84(1), 83–94. https://doi.org/10.1016/s0304-3894(01)00198-4

Zhang, Y., & Li, Z. (2017). Heavy metals removal using hydrogel-supported nanosized hydrous ferric oxide: Synthesis, characteriza-tion, and mechanism. Science of the Total Environment, 580, 776–786. https://doi.org/10.1016/j.scitotenv.2016.12.024

Published

2025-02-01

Issue

Section

Reviews

How to Cite

Sharma , J. (2025). Applications of nanomaterials to improve Phytoremediation: Nanoparticle Applications in Plant-Based Environmental Remediation Strategies. Contemporary Advances in Science and Technology, 6(2), 67-76. https://doi.org/10.5281/

Plaudit