Electrochemical & spectroscopic characterization of CC-PPY/PANI-MWCNT nanocomposite for microbial fuel cell applications

Authors

  • Sharaddha Sharma Department of Chemistry, Government College Gormi, Bhind –Jiwaji University, Gwalior, MP, India Author
  • D. C. Tiwari SOS in Electronics, Jiwaji University Gwalior Author

DOI:

https://doi.org/10.70130/CAST.2024.7104

Keywords:

conducting polymers, microbial fuel cells, waste water treatment

Abstract

Nanocomposite of polypyrrole/polyaniline multiwalled carbon nanotubes (PANI/PPY-multiwalled carbon nanotubes [MWCNT]) was electrochemically deposited on surface of porous carbon cloth (CC). The Modified nanocomposite was used as anode in microbial fuel cells (MFCs) for sewage waste water treatment while generating electrical power. The modified electrodes were characterized by scanning electron microscopy (SEM) and FTIR. The electrochemical properties and conductivity of the electrode have been evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The composite electrode shows good conductivity and power Density 1,145.4 + 5.5 mWm-2 obtained at seventh day, 15th and 27th day of incubation Composite also shows stability and biocompatibility for sewage waste water treatment while generating electricity.

References

Capakova, Z., Radaszkiewicz, K. A., Acharya, V., Traeong, t. H., Pachernik, J., Boben, P., Kaparkova, V., Steskal, J., Pfleger, J., Lehocky, M., & Humpolicek, P. (2020). The biocompatibility of polyaniline and polypyrrole 2: Doping with organic phosphates, 113, 110986.

Guo, Y., Wang, J., Shinde, S., Wang, X., Xang Li, Y., Ren, J., Zang, P., & Liu, X. (2020). Simultaneous waste water treatment and energy harvesting in microbial fuel cell: An update on biocatalyst. RSC Advances, 10, 25887.

He, Y.-R., Xiao, X., Li, W.-W., Sheng, G.-P., Yan, F.-F., Yu, H.-Q., Yuan, H., & Wu, L.-J. (2012). Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Physical Chemistry Chemical Physics, 14(28), 9966–9971. https://doi.org/10.1039/c2cp40873b

Hou, J., Liu, Z., & Zhang, P. (2013). A new method for fabrication of grapheme/polyaniline nanocomplex modified microbial fuel cell anodes. Journal of Power Sources, 224, 139–144. https://doi.org/10.1016/j.jpowsour.2012.09.091

Hutchinson, A. J., Tokash, J. C., & Logan, B. E. (2011). Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. Journal of Power Sources, 196(22), 9213–9219. https://doi.org/10.1016/j.jpowsour.2011.07.040

Jadhav, D. A., Carmona-Martínez, A. A., Chendake, A. D., Pandit, S., & Pant, D. (2021). Modeling and optimization strategies towards performance enhancement of microbial fuel cells. Bioresource Technology, 320(A), 124256. https://doi.org/10.1016/j.biortech.2020.124256

Jain, R. (2014). Tiwari Dc, Sharma S Mishra P, Efficiency and stability of carbon cloth electrode for electricity production from different types of waste waters using duel chamber microbial fuel cells. Journal of Scientific and Industrial Research, 74, 308.

Li, Z., & Gang, L. (2020). Article Research progress on application of polyaniline (PANI) for electrochemical energy storage and conversion. doi. Materials. https://doi.org/10.3390/ma1330548

Liu, J., Qiao, Y., Guo, C. X., Lim, S., Song, H., & Li, C. M. (2012). Grapheme/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresource Technology, 114, 275–280. https://doi.org/10.1016/j.biortech.2012.02.116

Luo, Y., Zhang, F., Wei, B., Liu, G., Zhang, R., & Logan, B. E. (2011). Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources, 196(22), 9317–9321. https://doi.org/10.1016/j.jpowsour.2011.07.077

Mishra, P. S Sharma Carbon cloth electrode for bioelectricity generation in microbial fuel cells. Journal of the Indian Chemical Society.

Picot, M., Lapinsonnière, L., Rothballer, M., & Barrière, F. (2011). Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosensors and Bioelectronics, 28(1), 181–188. https://doi.org/10.1016/j.bios.2011.07.017

Ren, H., Pyo, S., Lee, J.-I., Park, T.-J., Gittleson, F. S., Leung, F. C. C., Kim, J., Taylor, A. D., Lee, H.-S., & Chae, J. (2015). A high power density miniaturized microbial fuel cell having carbon nanotubes anodes. Journal of Power Sources, 273, 823–830. https://doi.org/10.1016/j.jpowsour.2014.09.165

Renslow, R., Donovan, C., Shim, M., Babauta, J., Nannapaneni, S., Schenk, J., & Beyenal, H. (2011). Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells. Physical Chemistry Chemical Physics, 13(48), 21573–21584. https://doi.org/10.1039/c1cp23200b

Santoro, C., Lei, Y., Li, B., & Cristiani, P. (2012). Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes. Biochemical Engineering Journal, 62, 8–16. https://doi.org/10.1016/j.bej.2011.12.006

Song, T. S., Tan, W. M., Wu, X. Y., & Zhou, C. C. (2012). Effect of graphite felt and activated carbon fiber felt on performance of freshwater sediment microbial fuel cell. Journal of Chemical Technology and Biotechnology, 87(10), 1436–1440. https://doi.org/10.1002/jctb.3764

Twari, D. C., Jain, R., & Sharma, S. (2007). Spectroscopic and Thermogravimetric analysis of PANI? PPY composite polymer electrode: Its application to electrochemical investigation of pharmaceutical investigation of pharmaceutical investigation. Applied polymer sciences, 110, 2328.

Xie, X., Ye, M., Hu, L., Liu, N., McDonough, J. R., Chen, W., Alshareef, H. N., Criddle, C. S., & Cui, Y. (2012). Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci, 5(1), 5265–5270. https://doi.org/10.1039/C1EE02122B

Yagoob, A. A., & Ibrahim. (2020). Development and modification of material to buit cost effective anodes for microbial fuel cells (MFCs): An overview. Biochemical Engineering Journal, 164, 10779.

Yang, G., Sun, Y., Yuan, Z., Lü, P., Kong, X., Li, L., Chen, G., & Lu, T. (2014). Application of surface-modified carbon powder in microbial fuel cells. Chinese Journal of Catalysis, 35(5), 770–775. https://doi.org/10.1016/S1872-2067(14)60023-1

Zhang, F., Xia, X., Luo, Y., Sun, D., Call, D. F., & Logan, B. E. (2013). Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technology, 133, 74–81. https://doi.org/10.1016/j.biortech.2013.01.036

Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X., & Yu, C. (2011). A graphene modified anode to improve the performance of microbial fuel cells. Journal of Power Sources, 196(13), 5402–5407. https://doi.org/10.1016/j.jpowsour.2011.02.067

Zhang, Y., Sun, J., Hu, Y., Li, S., & Xu, Q. (2012). Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials. International Journal of Hydrogen Energy, 37(22), 16935–16942. https://doi.org/10.1016/j.ijhydene.2012.08.064

Zhou, M., Chi, M., Wang, H., & Jin, T. (2012). Anode modification by electrochemical oxidation: A new practical method to improve the difference of microbial fuel cells. Biochemical Engineering Journal, 60, 151–155. https://doi.org/10.1016/j.bej.2011.10.014

Zhu, N., Chen, X., Zhang, T., Wu, P., Li, P., & Wu, J. (2011). Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresource Technology, 102(1), 422–426. https://doi.org/10.1016/j.biortech.2010.06.046

Published

2024-06-05

Issue

Section

Research Articles

How to Cite

Sharma, S., & Tiwari, D. C. . (2024). Electrochemical & spectroscopic characterization of CC-PPY/PANI-MWCNT nanocomposite for microbial fuel cell applications. Contemporary Advances in Science and Technology, 7, 45-54. https://doi.org/10.70130/CAST.2024.7104