An Insight into the Biomedical Applications of Cellulose Nanofibrils

Authors

  • Arvind Kumar Singh Department of Chemistry, Sahajanand Brahmarshi College, (Veer Kunwar Singh University) Ara, Bihar India-802301 Author
  • Vinod Kumar Department of Chemistry, Babu Shivnath Agrawal PG College Mathura, Uttar Pradesh, India-281004. Author

DOI:

https://doi.org/10.5281/

Keywords:

biopolymer, Scaffolds, Nanocellulose, cellulose nanofibers, glycoproteins

Abstract

Nanocellulose (NC) Scaffolds are natural organic moieties with superb chemo-mechanical properties. Owing to their water retention, water absorption, and optical transparency, they exhibit excellent biocompatibility. Current book chapter delineates the biomedical applications of cellulose nanofibrils (CNF) as scaffold materials.  Various aspects such as drug delivery, tissue engineering and bone regeneration have been systematically discussed. Low toxicity and very mild risks to living cells of CNFs encourages scientific community to explore its application in broad spectrum. Highly porous aerogels, obtained by freeze-drying techniques of CNFs, serve as remarkable scaffolds in cancer therapy. Simultaneously bone tissue engineering have witnessed excellent use of fabricated electrospun cellulose/nano-hydroxyappetite nanofibers (ECHNN).

References

Abitbol, T., Rivkin, A., Cao, Y., Nevo, Y., Abraham, E., Ben-Shalom, T., Lapidot, S. and Shoseyov, O., 2016. Nanocellu-lose, a tiny fiber with huge applications. Current opinion in biotechnology, 39, pp.76-88. https://doi.org/10.1016/j.copbio.2016.01.002

Aldemir Dikici, B., Dikici, S., Reilly, G. C., MacNeil, S., & Claeyssens, F. (2019). A novel bilayer polycaprolactone membrane for guided bone regeneration: Combining electrospinning and emulsion templating. Materials, 12(16), 2643. https://doi.org/10.3390/ma12162643

Amaral, H. R., Wilson, J. A., do Amaral, R. J. F. C., Pasçu, I., de Oliveira, F. C. S., Kearney, C. J., Freitas, J. C. C., & Heise, A. (2021). Synthesis of bilayer films from regenerated cellulose nanofibers and poly (globalide) for skin tissue engineering applications. Carbohydrate Polymers, 252, 117201. https://doi.org/10.1016/j.carbpol.2020.117201

Ao, C., Niu, Y., Zhang, X., He, X., Zhang, W., & Lu, C. (2017). Fabrication and characterization of electrospun cellu-lose/nano-hydroxyapatite nanofibers for bone tissue engineering. International Journal of Biological Macromol-ecules, 97, 568–573. https://doi.org/10.1016/j.ijbiomac.2016.12.091

Barroca, N., Marote, A., Vieira, S. I., Almeida, A., Fernandes, M. H. V., Vilarinho, P. M., & da Cruz E Silva, O. A. B. (2018). Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogen-esis. Colloids and Surfaces. B, Biointerfaces, 167, 93–103. https://doi.org/10.1016/j.colsurfb.2018.03.050

Basu, P., Repanas, A., Chatterjee, A., Glasmacher, B., NarendraKumar, U., & Manjubala, I. (2017). PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 195, 10–13. https://doi.org/10.1016/j.matlet.2017.02.065

Bergmann, C. P., & Stumpf, A. (2013). Dental ceramics. Biomaterials, 9–13. https://doi10.1007/978-3-642-38224-6.

Bhandari, J., Mishra, H., Mishra, P. K., Wimmer, R., Ahmad, F. J., & Talegaonkar, S. (2017). Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. International Journal of Nanomedicine, 12, 2021–2031. https://doi.org/10.2147/IJN.S124318

Bhattacharya, M., Malinen, M. M., Lauren, P., Lou, Y. R., Kuisma, S. W., Kanninen, L., Lille, M., Corlu, A., Guguen-Guillouzo, C., Ikkala, O., Laukkanen, A., Urtti, A., & Yliperttula, M. (2012). Nanofibrillar cellulose hydrogel pro-motes three-dimensional liver cell culture. Journal of Controlled Release, 164(3), 291–298. https://doi.org/10.1016/j.jconrel.2012.06.039

Campodoni, E., Heggset, E. B., Rashad, A., Ramírez-Rodríguez, G. B., Mustafa, K., Syverud, K., Tampieri, A., & Sandri, M. (2019). Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils. Materials Science and Engineering. C, Materials for Biological Applications, 94, 867–878. https://doi.org/10.1016/j.msec.2018.10.026

Chen, L., Zhu, J. Y., Baez, C., Kitin, P., & Elder, T. (2016). Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry, 18(13), 3835–3843. https://doi.org/10.1039/C6GC00687F

Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M., 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725, http://dx.doi.org/10.1016/j.carbpol.2010.03. 046.

Czaja, W. K., Young, D. J., Kawecki, M., & Brown, R. M. (2007). The future prospects of microbial cellulose in biomedi-cal applications. Biomacromolecules, 8(1), 1–12. https://doi.org/10.1021/bm060620d

Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, Jr., R. M. (2006). Microbial cellulose-the natural power to heal wounds. Biomaterials, 27(2), 145–151. https://doi.org/10.1016/j.biomaterials.2005.07.035

De Mori, A., Peña Fernández, M., Blunn, G., Tozzi, G., & Roldo, M. (2018). 3D printing and electrospinning of compo-site hydrogels for cartilage and bone tissue engineering. Polymers, 10(3), 285. https://doi.org/10.3390/polym10030285

Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., de Souza, S.F., Kottaisamy, M., 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour. Technol. 102, 1988–1997, http://dx.doi.org/10.1016/j.biortech.2010.09.030.

Deshpande, A. A., Rhodes, C. T., Shah, N. H., & Malick, A. W. (1996). Controlled-release drug delivery systems for pro-longed gastric residence: An overview. Drug Development and Industrial Pharmacy, 22(6), 531–539. https://doi.org/10.3109/03639049609108355

Dobos, A., Grandhi, T. S. P., Godeshala, S., Meldrum, D. R., & Rege, K. (2018). Parallel fabrication of macroporous scaf-folds. Biotechnology and Bioengineering, 115(7), 1729–1742. https://doi.org/10.1002/bit.26593

Dufresne, A., Cavaillé, J.Y., Vignon, M.R., 1997. Mechanical behavior of sheets prepared from sugar beet cellulose mi-crofibrils. J. Appl. Polym. Sci. 64, 1185–1194, http://dx.doi.org/10.1002/(SICI)1097- 4628(19970509)64:63.0.CO;2-V

Eyholzer, C., Borges de Courac¸ a, A., Duc, F., Bourban, P.E., Tingaut, P., Zimmermann, T., Månson, J.A.E., Oksman, K., 2011. Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12, 1419–1427, http://dx.doi.org/10. 1021/bm101131b

Fazil, M., Baboota, S., Sahni, J. K., Ameeduzzafar, A. J., & Ali, J. (2015). Bisphosphonates: Therapeutics potential and recent advances in drug delivery. Drug Delivery, 22(1), 1–9. https://doi.org/10.3109/10717544.2013.870259

Fereshteh, Z., Fathi, M., Bagri, A., & Boccaccini, A. R. (2016). Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Materials Sci-ence and Engineering. C, Materials for Biological Applications, 68, 613–622. https://doi.org/10.1016/j.msec.2016.06.009

García-González, C. A., López-Iglesias, C., Concheiro, A., & Alvarez-Lorenzo, C. (2018). Biomedical applications of polysaccharide and protein based aerogels. In Biobased aerogels pp. 295–323. https://doi.org/10.1039/9781782629979-00295.

Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applica-tions. Chemical Reviews, 110(6), 3479–3500. https://doi.org/10.1021/cr900339w

Hickey, R. J., & Pelling, A. E. (2019). Cellulose biomaterials for tissue engineering. Frontiers in Bioengineering and Biotechnology, 7, 45. https://doi.org/10.3389/fbioe.2019.00045

Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: a review. BioResources, 3(3), 929-980. https://www.academia.edu/download/37878600/BioRes_03_3_0929_Hubbe_RLS_Cell_NanoComp_Review.pdf

Kaboorani, A., Riedl, B., Blanchet, P., 2013. Ultrasonication technique: a method for dispersing nanoclay in wood adhe-sives. J. Nanomater. 2013, e341897, http:// dx.doi.org/10.1155/2013/341897

Jorfi, M., & Foster, E. J. (2015). Recent advances in nanocellulose for biomedical applications. Journal of Applied Pol-ymer Science, 132(14). https://doi.org/10.1002/app.41719

Jung, J. Y., Khan, T., Park, J. K., & Chang, H. N. (2007). Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering, 24(2), 265–271. https://doi.org/10.1007/s11814-007-5058-4

Khan, M. I. H., An, X., Dai, L., Li, H., Khan, A., & Ni, Y. (2019). Chitosan-based polymer matrix for pharmaceutical ex-cipients and drug delivery. Current Medicinal Chemistry, 26(14), 2502–2513. https://doi.org/10.2174/0929867325666180927100817

Lantada, A. D. (2016). Microsystems for enhanced control of cell behavior. Fudamentls, Design and Manufacturing Strategies, Applications and Challenges. https://doi.org/10.1007/978-3-319-29328-8

Laurén, P., Lou, Y. R., Raki, M., Urtti, A., Bergström, K., & Yliperttula, M. (2014). Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. European Journal of Pharmaceutical Sciences, 65, 79–88. https://doi.org/10.1016/j.ejps.2014.09.013

Lee, H. S., Byun, S. H., Cho, S. W., & Yang, B. E. (2019). Past, present, and future of regeneration therapy in oral and periodontal tissue: A review. Applied Sciences, 9(6), 1046. https://doi.org/10.3390/app9061046

Li, J., Cha, R., Mou, K., Zhao, X., Long, K., Luo, H., Zhou, F., & Jiang, X. (2018). Nanocellulose‐based antibacterial ma-terials. Advanced Healthcare Materials, 7(20), e1800334. https://doi.org/10.1002/adhm.201800334

Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

Luo, Y., Li, Y., Qin, X., & Wa, Q. (2018). 3D printing of concentrated alginate/gelatin scaffolds with homogeneous Nano apatite coating for bone tissue engineering. Materials and Design, 146, 12–19. https://doi.org/10.1016/j.matdes.2018.03.002

Meneguin, A. B., Ferreira Cury, B. S., Dos Santos, A. M., Franco, D. F., Barud, H. S., & da Silva Filho, E. C. (2017). Re-sistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate re-lease. Carbohydrate Polymers, 157, 1013–1023. https://doi.org/10.1016/j.carbpol.2016.10.062

Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advanc-es. Industrial Crops and Products, 93, 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016.

Nemati, S., Kim, S. J., Shin, Y. M., & Shin, H. (2019). Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence, 6(1), 36. https://doi.org/10.1186/s40580-019-0209-y

Nurani, M., Akbari, V., & Taheri, A. (2017). Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydrate Polymers, 165, 322–333. https://doi.org/10.1016/j.carbpol.2017.02.067

Nurulhuda, A., Izman, S., & Ngadiman, N. H. A. (2019). Fabrication PEGDA/ANFs biomaterial as 3D tissue engineering scaffold by DLP 3D printing Tecshnology. International Journal of Engineering and Advanced Technology, 8(6), 751–758. https://doi.org/10.35940/ijeat.F7989.088619

Parida, P., Behera, A., & Chandra Mishra, S. C. (2012). Classification of biomaterials used in medicine. International Journal of Advances in Applied Sciences, 1(3). https://doi.org/10.11591/ijaas.v1i3.882

Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., & Guan, G. (2018). Nanocellulose: Extraction and ap-plication. Carbon Resources Conversion, 1(1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004

Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: An introduction to materials in medicine. Elsevier. https://doi.org/10.1557/mrs2006.17

Saito, T., Isogai, A., 2006. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf. A: Physicochem. Eng. Aspects 289, 219–225, http://dx.doi.org/10.1016/j.colsurfa.2006.04.038

Sharip, N. S., & Ariffin, H. (2019). Cellulose nanofibrils for biomaterial applications. Materials Today: Proceedings, 16, 1959–1968. https://doi.org/10.1016/j.matpr.2019.06.074.

Uetani, K., & Yano, H. (2011). Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules, 12(2), 348-353. https://pubs.acs.org/doi/abs/10.1021/bm101103p

Tan, C., Fung, B. M., Newman, J. K., & Vu, C. (2001). Organic aerogels with very high impact strength. Advanced mate-rials, 13(9), 644-646. https://doi.org/10.1002/1521-4095(200105)13:9%3C644::AID-ADMA644%3E3.0.CO;2-%23

Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27. https://doi.org/10.1016/j.addr.2015.11.001

Valo, H., Arola, S., Laaksonen, P., Torkkeli, M., Peltonen, L., Linder, M. B., Serimaa, R., Kuga, S., Hirvonen, J., & Laak-sonen, T. (2013). Drug release from nanoparticles embedded in four different nanofibrillar cellulose aero-gels. European Journal of Pharmaceutical Sciences, 50(1), 69–77. https://doi.org/10.1016/j.ejps.2013.02.023

Valo, H., Kovalainen, M., Laaksonen, P., Häkkinen, M., Auriola, S., Peltonen, L., Linder, M., Järvinen, K., Hirvonen, J., & Laaksonen, T. (2011). Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. Journal of Controlled Release, 156(3), 390–397. https://doi.org/10.1016/j.jconrel.2011.07.016

Wang, S., Cheng, Q., 2009. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J. Appl. Polym. Sci. 113, 1270–1275, http://dx.doi.org/10.1002/app.30072

Zhang, H., Xia, J., Pang, X., Zhao, M., Wang, B., Yang, L., Wan, H., Wu, J., & Fu, S. (2017). Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Materials Science and Engineering. C, Materials for Bi-ological Applications, 73, 537–543. https://doi.org/10.1016/j.msec.2016.12.116

Zhu, H., Luo, W., Ciesielski, P. N., Fang, Z., Zhu, J. Y., Henriksson, G., Himmel, M. E., & Hu, L. (2016). Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 116(16), 9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225

Published

2025-02-01

Issue

Section

Reviews

How to Cite

Singh, A. K., & Kumar, V. (2025). An Insight into the Biomedical Applications of Cellulose Nanofibrils. Contemporary Advances in Science and Technology, 6(2), 77-86. https://doi.org/10.5281/

Plaudit