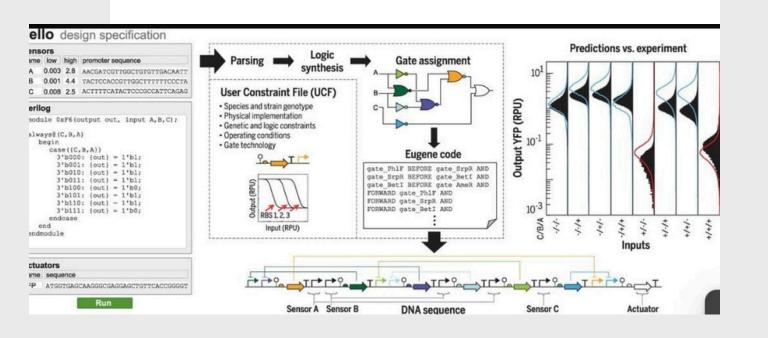


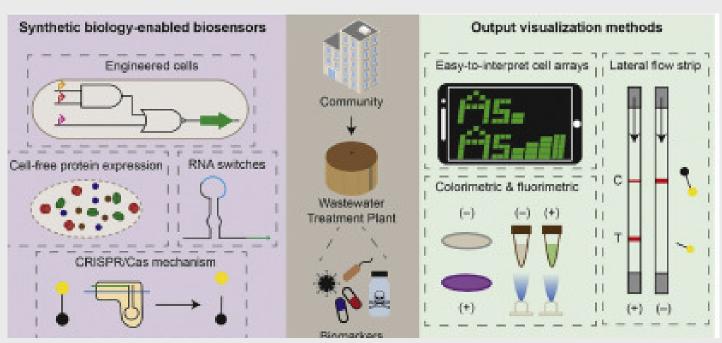
Engineering Living Biosensors

Integrating Bio-Computing Principles for Sustainable Environmental Monitoring


INTRODUCTION

- MICROBE GENE CIRCUIT Reporter Gene Glesserzer
- 1. The increased environmental pollution has led to a demand for more sustainable, **cost-effective**, and **sensitive detection** technologies.
- 2. Traditional sensor system relies on chemical assays or electronic devices, often **NON-BIODEGRADABLE**. In contrast, living biosensors can be engineered to specific environmental cues.
- 3. Through the engineering of a genetic circuit, it can be programmed to perform logical operations.

OBJECTIVE


Develop living microbial biosensors integrating biocomputing principles for real-time, eco-friendly detection of pollutants.

These biosensors aim to mimic digital logic operations within cells for sustainable environmental monitoring.

REFERENCES

- Purnick & Weiss (2009), Nature Rev. Mol. Cell Biol., 10(6), 410-422.
- van der Meer & Belkin (2010), Nature Rev. Microbiol., 8(7), 511–522.
- Nielsen et al. (2016), Science, 352(6281), aac7341.
- Zhang et al. (2021), Trends Biotechnol., 39(7), 731–742.

METHODOLOGY

SELECT MICROBE	Select a microbial strain ex . ECOLI	
DESIGN GENE CIRCUIT	DESIGN GENE CIRCUIT	
ADD REPORTER GENE	Create logic based genetic circuit (AND /OR/NOT)	
TEST & CALIBERATE	Expose the engineered microbe to a pollutant for response and record the results	
DEPLOY BIOSENSORS	Immobilize microbes in hydorgel and films	

RESULTS /FINDINGS

- Bio-computing enables programmable and adaptive detection systems.
- Biosensors are biodegradable, selfreplicating, and low-energy, aligning with **green chemistry principles.**
- Potential applications: industrial waste monitoring, water testing, and environmental surveillance.

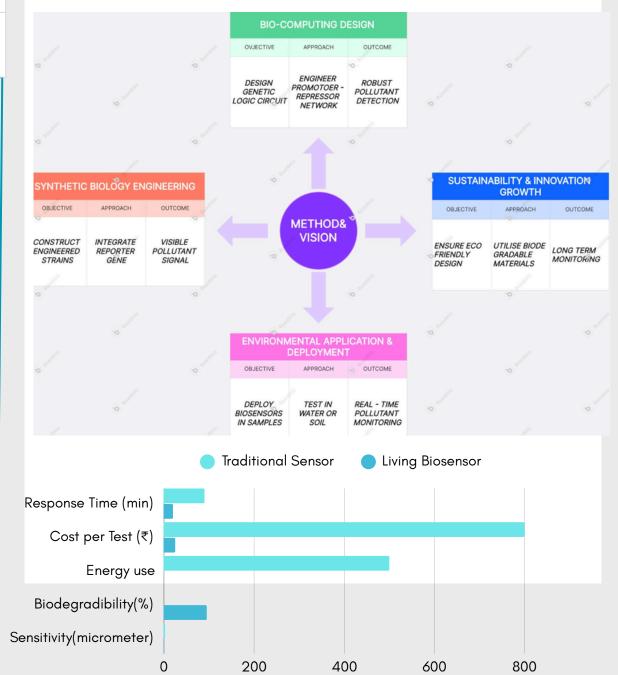
DISCUSSION

- Bio-computing enables intelligent,
 logic-based pollutant detection.
- Living biosensors offer eco-friendly, low-energy sensing compared to electronic systems..
- Supports sustainable, real-time monitoring aligned with global green goals.
- Future scope: IoT integration, multipollutant and cell-free systems.

		pollutant an	ia ceii-tree systei
Logic Gate	Input Condition (Pollutant Presence)	Output Signal (Fluorescence or Color Change)	Interpretation
AND Gate	Input Condition (Pollutant Presence)	High GFP fluorescence (green)	Both pollutants detected simultaneously
OR Gate	Input Condition (Pollutant Presence)	Moderate fluorescence	Either pollutant present
NOT Gate	Input Condition (Pollutant Presence)	No fluorescence / baseline color	Clean environment

AUTHORS

SAMIHAN SHARMA


EMAIL: samihansharma.2005@gmail.com

AFFILIATIONS

Department of Biotechnology, Delhi Technological University, Delhi, India

ANALYSIS

- Integrates synthetic biology with computational logic for smart sensing.
- Uses gene circuits to convert chemical signals into visual outputs.
- Provides a green, low-cost alternative to traditional detectors.
- Enables autonomous, scalable and sustainable monitoring systems.

CREATED AND MADE BY: SAMIHAN SHARMA