Evaluation of Radiation Shielding Potential of Bismuth Boro-Tellurite Glasses

Anil Kharb^{1*}, Renu Sharma¹

¹Department of Physics, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, India – 133207 (Corresponding author: anilkharb110@gmail.com)

Abstract:

The increasing demand for effective and environment friendly radiation shielding materials has led to the exploration of bismuth boro-tellurite glasses as potential alternatives to conventional lead materials. This study investigated the radiation shielding potential of bismuth tellurite glasses having composition $15B_2O_3$ -xBi₂O₃-(85-x)TeO₂ where x = 35, 40, 45, 50, 55 mol % & analyzed the mass attenuation coefficient (μ/ρ), effective atomic number (Z_{eff}) & electron density (N_e) over a wide photon energy range of 0.015 MeV to 15 MeV using WinXcom software. The dependence of Z_{eff} and N_e on photon energy and Bi₂O₃ concentration was evaluated to assess the material's radiation shielding efficiency. The results indicated that the increasing Bi₂O₃ content enhances the photon attenuation due to the high atomic number and density of bismuth. It has been observed that the G₅ glass sample exhibiting the maximum value of mass attenuation coefficient (μ/ρ), effective atomic number (Z_{eff}) & electron density (N_e) and can be used as a promising material for radiation protection applications in nuclear medicine, space technology and high-energy physics.

Keywords: Bismuth tellurite glasses, mass attenuation coefficient, effective atomic number, electron density, radiation shielding.