The Properties and Applications of Polymer Composites
Abstract
This chapter describes the properties and applications of polymer composites. In the area of energy storage, different solutions are required due to the scarcity of traditional energy sources. Polymer composite materials have seen a notable surge in research attention in recent years as a means of addressing these problems. The development of materials with high dielectric permittivity is critically needed as the demands for an affordable, high-efficiency capacitive storage system rise. Dielectric polymers (PVDF and Polystyrene) are useful for electrostatic energy storage as they have high melting and boiling points and high breakdown strengths. However, the expanding demands of production and living cannot be met by pure PVDF. They are limited in their application in harsh-environment electronic devices, circuits, and systems due to their low energy density and poor efficiency at high temperatures. The incorporation of various fillers into a polymer matrix with a high breakdown field in dielectric polymer composites has garnered noteworthy interest from research community. Several critical elements, including the composite structure, the type and morphologies of the filler, the interfacial engineering, and the polymer matrix selection, all affect the energy storage performance. Excellent (dielectric, optical, chemical, electrical, thermal, and mechanical) properties have been provided by the composites of bismuth oxide and PVDF (BO/PVDF) and bismuth oxide and carbon nanotubes (BO-CNT/PVDF). Dielectric permittivity of polymer composites increases with increasing filler concentration and decrease with frequency of applied external field. Polymer composite materials are useful in energy storage and generation, packaging, defense system, electromagnetic shielding, sensors, coating, drug delivery, information technology etc. There are numerous varieties of polymer composite materials, so further investigation into these materials will be crucial to advancing our understanding of energy-storage materials.
References
Adireddy, S., Puli, V. S., Lou, T. J., Elupula, R., Sklare, S. C., Riggs, B. C., & Chrisey, D. B. (2015). Polymer-ceramic nanocomposites for high energy density applications. Journal of Sol-Gel Science and Technology, 73(3), 641–646. https://doi.org/10.1007/s10971-014-3573-4
Alateyah, A. I., Dhakal, H. N., & Zhang, Z. Y. (2013). Processing, properties, and applications of polymer nanocomposites based on layer silicates: A review. Advances in Polymer Technology, 32(4). https://doi.org/10.1002/adv.21368
Bakelite: The World’s first synthetic plastic. National historic chemical landmarks, American Chemical Society. Archived from the original on July 22, 2012. Retrieved June 25, 2012.
Barbara, H. S. (2002). Polymer analysis, 30 of Analytical Techniques in the Sciences (AnTs) p. 2008. Wiley, ISBN: 978-0-471-81363-7.
Brittter, H., & Liam, M. G. (2019). Biomaterials for skin repair and regeneration. Woodhead Publishing, ISBN 978-0-08-102546-8. https://doi.org/10.1016/C2017-0-02147-X
Chadwick, A. V., Zhou, W., & Thomas, J. M. (1989). Angew. Chem. Znt. Ed. Engl. 28, 75. Angewandte Chemie, 101, 69.
Chanda, M. (2006). Introduction to polymer science and chemistry. CRC Press, Taylor & Francis Group, eBook ISBN: 9780429128721. https://doi.org/10.1201/9781420007329
Chung, D. D. L. (2017). Cement-matrix composites. Carbon Composites, 333–386. https://doi.org/10.1016/b978-0-12-804459-9.00006-3
Cowie, J. M. G. (1991). http://shorturl.at/chvxO. Polymers: Chemistry and physics of modern materials. Blackie academic and Professiona (2nd ed). ISBN-10, ISBN-13, 4x p. 978-0751401349, 07514013.
Deliolanis, N. C., Vanidhis, E. D., & Vainos, N. A. (2006). Dispersion of electrogyration in sillenite crystals. Applied Physics B, 85(4), 591–596. https://doi.org/10.1007/s00340-006-2437-1
Deng, J., & Cui, Q. (2022). Electronic polarization is essential for the stabilization and dynamics of buried ion pairs in staphylococcal nuclease mutants. Journal of the American Chemical Society, 144(10), 4594–4610. https://doi.org/10.1021/jacs.2c00312
Diego, J. A., Sellarès, J., Aragoneses, A., Mudarra, M., Cañadas, J. C., & Belana, J. (2007). TSDC study of the glass transition: Correlation with calorimetric data. Journal of Physics. Part D, 40(4), 1138–1145. https://doi.org/10.1088/0022-3727/40/4/035
Fan, B. H., Zha, J. W., Wang, D. R., Zhao, J., & Dang, Z. M. (2012). Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films. Applied Physics Letters, 100(9), 092903. https://doi.org/10.1063/1.3691198
Fan, Y., Huang, X., Wang, G., & Jiang, P. (2015). Core–shell structured Biopolymer@BaTiO3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability. Journal of Physical Chemistry C, 119(49), 27330–27339. https://doi.org/10.1021/acs.jpcc.5b09619
Feldman, A., Brower, Jr., W. S., & Horowitz, D. (1970). Optical activity and faraday rotation in bismuth oxide compounds. Applied Physics Letters, 16(5), 201–202. https://doi.org/10.1063/1.1653161
Feng, Y., Li, W. L., Hou, Y. F., Yu, Y., Cao, W. P., Zhang, T. D., & Fei, W. D. (2015). Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. Journal of Materials Chemistry C, 3(6), 1250–1260. https://doi.org/10.1039/C4TC02183E
Feughelman, M. (1997). Mechanical properties and structure of alpha-keratin fibers, wool, human hair and related fibers. UNSW press, Sydney. Textile Research Journal, 67(7), 541–541. https://doi.org/10.1177/004051759706700710
Fu, J., Hou, Y., Wei, Q., Zheng, M., Zhu, M., & Yan, H. (2015). Advanced FeTiNbO6/poly(vinylidene fluoride) composites with a high dielectric permittivity near the percolation threshold. Journal of Applied Physics, 118(23), 235502. https://doi.org/10.1063/1.4937581
Giannoukos, G., Min, M., & Rang, T. (2017). Relative complex permittivity and its dependence on frequency. World Journal of Engineering, 14(6), 532–537. https://doi.org/10.1108/WJE-01-2017-0007
Gowariker, V. R., Viswanathan, N. V., & Sreedhar, J. (1986). Polymer science. New age international. http://shorturl.at/pCEGN, ISBN: 0-85226-307-4.
Gun’ko, V. M., Zarko, V. I., Voronin, E. F., Goncharuk, E. V., Andriyko, L. S., Guzenko, N. V., Nosach, L. V., & Janusz, W. (2006). Successive interaction of pairs of soluble organics with nanosilica in aqueous media. Journal of Colloid and Interface Science, 300(1), 20–32, ISSN 0021-9797. https://doi.org/10.1016/j.jcis.2006.03.034
Günter, R., & Jens-Uwe, S. (2003). Polymer crystallization: Observations, concepts, and interpretations. Lecture Notes in Physics, ISBN-10:3642079334, ISBN-13, 606 p. 978-3642079337. Springer.
Gupta, M., & Wong, W. L. (2007). Microwaves and metals. John Wiley & Sons; ISBN 978-0-470-82272-2.
Halford, J. H., & Hacker, H. (1969). Dielectric properties of bismuth trioxide thin films. Thin Solid Films, 4(4), 265–279. https://doi.org/10.1016/0040-6090(69)90072-8
Harriman, A., Thomas, J. M., Zhou, W., & Jefferson, D. A. (1988). A new family of photocatalysts based on Bi2O3. Journal of Solid State Chemistry, 72(1), 126–130. https://doi.org/10.1016/0022-4596(88)90015-1
Huang, X., Sun, B., Zhu, Y., Li, S., & Jiang, P. (2019). High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science, 100, 187–225. https://doi.org/10.1016/j.pmatsci.2018.10.003
Jensen, W. B. (2008 b). The origin of the polymer concept. Journal of Chemical Education, 85(5), 624. https://doi.org/10.1021/ed085p624
Jensen, W. B. (2008). The origin of the polymer concept. Journal of Chemical Education, 85(5), 624. https://doi.org/10.1021/ed085p624
Kao, K. C. (2004). Dielectric phenomena in solids (1st ed). Elsevier Academic Press, ISBN 978-0123965615
Kim, K., Yuan, H., Jang, H., Kim, B., Seoung, D., Hikita, Y., Hwang, H. Y., & Lee, J. (2018). Spontaneous ionic polarization in ammonia-based ionic liquid. ACS Applied Energy Materials, 1(6), 2717–2720. https://doi.org/10.1021/acsaem.8b00383
Landel, R. F., & Nielsen, L. E. (1993). Mechanical properties of polymers and composites (2nd ed). CRC Press. https://doi.org/10.1201/b16929
Leontie, L., Caraman, M., Delibaş, M., & Rusu, G. I. (2001). Optical properties of bismuth trioxide thin films. Materials Research Bulletin, 36(9), 1629–1637. https://doi.org/10.1016/S0025-5408(01)00641-9
Li, L., Zhang, M., Rong, M., & Ruan, W. (2014). Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv, 4(8), 3938–3943. https://doi.org/10.1039/C3RA45134H
Li, Q., Chen, L., Gadinski, M. R., Zhang, S., Zhang, G., Li, U., Iagodkine, E., Haque, A., Chen, L. Q., Jackson, N., & Wang, Q. (2015). Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 523(7562), 576–579. https://doi.org/10.1038/nature14647
Li, Q., Chen, L., Gadinski, M. R., Zhang, S., Zhang, G., Li, U., Iagodkine, E., Haque, A., Chen, L. Q., Jackson, N., & Wang, Q. (2015 b). Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 523(7562), 576–579. https://doi.org/10.1038/nature14647
Li, Q., Yao, F.-Z., Liu, Y., Zhang, G., Wang, H., & Wang, Q. (2018). High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research, 48(1), 219–243. https://doi.org/10.1146/annurev-matsci-070317-124435
Li, W., Meng, Q., Zheng, Y., Zhang, Z., Xia, W., & Xu, Z. (2010). Electric energy storage properties of poly (vinylidene fluoride). Applied Physics Letters, 96(19), 192905. https://doi.org/10.1063/1.3428656
Liu, S., Xue, S., Zhang, W., & Zhai, J. (2014). Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly (vinylidene fluoride) nanocomposites. Ceramics International, 40(10), 15633–15640. https://doi.org/10.1016/j.ceramint.2014.07.083
Liu, S., Xue, S., Zhang, W., Zhai, J., & Chen, G. (2015). The influence of crystalline transformation of Ba0. 6Sr0. 4TiO3 nanofibers/poly (vinylidene fluoride) composites on the energy storage properties by quenched technique. Ceramics International, 41, S430–S434. https://doi.org/10.1016/j.ceramint.2015.03.175
Luo, B., Wang, X., Wang, Y., & Li, L. (2014). Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A, 2(2), 510–519. https://doi.org/10.1039/C3TA14107A
Luo, J., Demchuk, Z., Zhao, X., Saito, T., Tian, M., Sokolov, A. P., & Cao, P. F. (2022). Elastic vitrimers: Beyond thermoplastic and thermoset elastomers. Matter, 5(5), 1391–1422. https://doi.org/10.1016/j.matt.2022.04.007
Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006
McCauley, J. W., & Weiss, V. (1986). Materials characterization for systems performance and reliability. Sagamore Army Materials Research Conference Proceedings, 26 (pp. 978–971)-4613-2119-4. Springer. ISBN: 978-1-4612-9253-1. https://doi.org/10.1007/978-1-4613-2119-4_9
Meeporn, K., Thongbai, P., Yamwong, T., & Maensiri, S. (2017). Greatly enhanced dielectric permittivity in La 1.7 Sr 0.3 NiO 4 /poly(vinylidene fluoride) nanocomposites that retained a low loss tangent. In RSC Advances, 7(28), 17128–17136. https://doi.org/10.1039/C7RA01675A
Mittal, V. (2010). Optimization of polymer nanocomposite properties. Wiley, ISBN: 978-3-527-62927-5.
Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Pérez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castelló, S., & Schmid, M. (2017). Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 7(4), 74, Mar. 2017. https://doi.org/10.3390/nano7040074
Nicholson, J. W. (2012). The chemistry of polymer. Royal Society of Chemistry Publishing, Print ISBN:978-0-85404-684-3. https://doi.org/10.1039/9781847552655
Nunes, R. W., Martin, J. R., & Johnson, J. F. (1982). Influence of molecular weight distributions on mechanical properties of polymers. Polymer Engineering and Science, 22(4), 193. https://doi.org/10.1002/pen.760220402
Odian, G. (2004). Principles of polymerization (4th ed). https://unpa.edu.mx/~aramirez/Principles%20of%20polymerization.pdf. Wiley International, ISBN: 978-0-471-27400-1.
Pan, A., & Ghosh, A. (2000). A new family of lead–bismuthate glass with a large transmitting window. Journal of Non-Crystalline Solids, 271(1–2), 157–161. https://doi.org/10.1016/S0022-3093(00)00111-3
Pan, Z. B., Yao, L. M., Zhai, J. W., Liu, S. H., Yang, K., Wang, H. T., & Liu, J. H. (2016). Fast discharge and high energy density of nanocomposite capacitors using Ba 0.6 Sr 0.4 TiO 3 nanofibers. Ceramics International, 42(13), 14667–14674. https://doi.org/10.1016/j.ceramint.2016.06.090
Pan, Z., Yao, L., Ge, G., Shen, B., & Zhai, J. (2018). High-performance capacitors based on NaNbO 3 nanowires/poly (vinylidene fluoride) nanocomposites. Journal of Materials Chemistry A, 6(30), 14614–14622. https://doi.org/10.1039/C8TA03084G
Pastore, M., Fantacci, S., & De Angelis, F. (2013). Modeling excited states and alignment of energy levels in dye-sensitized solar cells: Successes, failures, and challenges. Journal of Physical Chemistry C, 117(8), 3685–3700. https://doi.org/10.1021/jp3095227
Peters, E. N. (ND). (2002). Chapt. 11. Handbook of materials Selection 335–355. In Plastics: Thermoplastics, thermosets, and elastomers, ISBN: 9780471359241. https://doi.org/10.1002/9780470172551.ch11
Qiao, Y., Yin, X., Zhu, T., Li, H., & Tang, C. (2018). Dielectric polymers with novel chemistry, compositions and architectures. Progress in Polymer Science, 80, 153–162. https://doi.org/10.1016/j.progpolymsci.2018.01.003
Qiu, Z. (2019). Transition metal-based electrocatalysts for alkaline water splitting and CO2 reduction. http://orcid.org/0000-0002-7892-5260 (Doctoral dissertation, Acta Universitatis Upsaliensis).
Riggs, B. C., Adireddy, S., Rehm, C. H., Puli, V. S., Elupula, R., & Chrisey, D. B. (2015). Polymer nanocomposites for energy storage applications. Materials Today: Proceedings, 2(6), 3853–3863. https://doi.org/10.1016/j.matpr.2015.08.004
Scheirs, J. (2000). Compositional and failure analysis of polymer. John Wiley & Sons, ISBN: 978-0-471-62572-8.
Sebastian, M. T. (2010). Dielectric materials for wireless communication. Elsevier, ISBN: 978-0-08-045330-9.
Seh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Nørskov, J. K., & Jaramillo, T. F. (2017). Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 355(6321), eaad4998. https://doi.org/10.1126/science.aad4998
Sharma, M., Sharma, K., & Bose, S. (2013). Segmental relaxations and crystallization-induced phase separation in PVDF/PMMA blends in the presence of surface-functionalized multiwall carbon nanotubes. Journal of Physical Chemistry. B, 117(28), 8589–8602. https://doi.org/10.1021/jp4033723
Verma, K. D., Sinha, P., Banerjee, S., & Kar, K. K. (2020 a), Chap. 9. Handbook of nanocomposite supercapacitor materials I characteristics. Springer (pp. 269–284).
Verma, K. D., Sinha, P., Banerjee, S., & Kar, K. K. (2020 b). Handbook of Nanocomposite Supercapacitor Materials I Characteristics. Springer International Publishing, chap, 9, 269–284.
Wang, Q., & Zhu, L. (2011). Polymer nanocomposites for electrical energy storage. Journal of Polymer Science Part B, 49(20), 1421–1429. https://doi.org/10.1002/polb.22337
Want, B., Bhat, B. H., & Ahmad, B. Z. (2015). Effect of lanthanum substitution on dielectric relaxation, impedance response, conducting and magnetic properties of strontium hexaferrite. Journal of Alloys and Compounds, 627, 78–84. https://doi.org/10.1016/j.jallcom.2014.11.065
Yamada, Y. (2022). Dielectric properties of textile materials: Analytical approximations and experimental measurements—A review. Textiles, 2(1), 50–80. https://doi.org/10.3390/textiles2010004
Yamamoto, T. (ND). (2005). Molecular Dynamics modeling of the crystal-melt interfaces and the growth of chain folded lamellae. Advances in Polymer Science, 37–85. https://doi.org/10.1007/12_012
Yang, M., Zhao, H., He, D., & Bai, J. (2017 b). Constructing a continuous amorphous carbon interlayer to enhance dielectric performance of carbon nanotubes/polyvinylidene fluoride nanocomposites. Carbon, 116, 94–102. https://doi.org/10.1016/j.carbon.2017.01.105
Yang, M., Zhao, H., He, D., & Bai, J. (2017). Constructing a continuous amorphous carbon interlayer to enhance dielectric performance of carbon nanotubes/polyvinylidene fluoride nanocomposites. Carbon, 116, 94–102. https://doi.org/10.1016/j.carbon.2017.01.105
Yang, Y., He, J., Li, Q., Gao, L., Hu, J., Zeng, R., & Wang, Q. (2018). Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nature Nanotechnology, 14(2), 151–155. https://doi.org/10.1038/s41565-018-0327-4
Yaqoob, U., Uddin, A. S. M. I., & Chung, G.-S. (2016). The effect of reduced graphene oxide on the dielectric and ferroelectric properties of PVDF–BaTiO3 nanocomposite. RSC Advances, 6(36), 30747–30754. https://doi.org/10.1039/C6RA03155B
Yu, K., Niu, Y., Bai, Y., Zhou, Y., & Wang, H. (2013). Poly(vinylidene fluoride) polymer based nanocomposites with significantly reduced energy loss by filling with core-shell structured BaTiO3/SiO2 nanoparticles. Applied Physics Letters, 102(10), 102903. https://doi.org/10.1063/1.4795017
Zaferani, S. H. (2018). Polymer-based nanocomposites for energy and environmental applications. Introduction of Polymer-Based Nanocomposites, 1–25. https://doi.org/10.1016/b978-0-08-102262-7.00001-5
Zhang, D., Liu, W., Tang, L., Zhou, K., & Luo, H. (2017). High performance capacitors via aligned TiO2 nanowire array. Applied Physics Letters, 110(13), 133902. https://doi.org/10.1063/1.4979407